메뉴 건너뛰기




Volumn 56, Issue 1, 2012, Pages 27-34

Predicting warfarin dosage from clinical data: A supervised learning approach

Author keywords

Classifier ensemble; Dosage prediction; Model tree; Multilayer perceptron; Support vector regression; Warfarin

Indexed keywords

CLASSIFIER ENSEMBLES; MODEL TREES; MULTI LAYER PERCEPTRON; SUPPORT VECTOR REGRESSION (SVR); WARFARIN;

EID: 84865552342     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2012.04.001     Document Type: Article
Times cited : (45)

References (38)
  • 3
    • 8844230315 scopus 로고    scopus 로고
    • Personalized versus non-personalized computerized decision support system to increase therapeutic quality control of oral anticoagulant therapy: an alternating time series analysis
    • Colombet I., Bura-Rivière A., Chatila R., Chatellier G., Durieux P. Personalized versus non-personalized computerized decision support system to increase therapeutic quality control of oral anticoagulant therapy: an alternating time series analysis. BMC Health Services Research 2004, 4:27.
    • (2004) BMC Health Services Research , vol.4 , pp. 27
    • Colombet, I.1    Bura-Rivière, A.2    Chatila, R.3    Chatellier, G.4    Durieux, P.5
  • 4
    • 0042669840 scopus 로고    scopus 로고
    • Explaining the output of ensembles in medical decision support on a case by case basis
    • Wall R., Cunningham P., Walsh P., Byrne S. Explaining the output of ensembles in medical decision support on a case by case basis. Artificial Intelligence in Medicine 2003, 28(2):191-206.
    • (2003) Artificial Intelligence in Medicine , vol.28 , Issue.2 , pp. 191-206
    • Wall, R.1    Cunningham, P.2    Walsh, P.3    Byrne, S.4
  • 8
    • 79955766600 scopus 로고    scopus 로고
    • High-dimensional pharmacogenetic prediction of a continuous traits using machine learning techniques with application to warfarin dosage prediction in African Americans
    • Cosgun E., Limdi N.A., Duarte C.W. High-dimensional pharmacogenetic prediction of a continuous traits using machine learning techniques with application to warfarin dosage prediction in African Americans. Bioinformatics 2011, 27(10):1384-1389.
    • (2011) Bioinformatics , vol.27 , Issue.10 , pp. 1384-1389
    • Cosgun, E.1    Limdi, N.A.2    Duarte, C.W.3
  • 9
    • 77956267130 scopus 로고    scopus 로고
    • Application of Akaike information criterion to evaluate warfarin dosing algorithm
    • Harada T., Ariyoshi N., Shimurad H., Sato Y., Yokoyama I., Takahashi K., et al. Application of Akaike information criterion to evaluate warfarin dosing algorithm. Thrombosis Research 2010, 126(3):183-190.
    • (2010) Thrombosis Research , vol.126 , Issue.3 , pp. 183-190
    • Harada, T.1    Ariyoshi, N.2    Shimurad, H.3    Sato, Y.4    Yokoyama, I.5    Takahashi, K.6
  • 10
    • 36148985283 scopus 로고    scopus 로고
    • Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients
    • Miao L., Yang J., Huang C., Shen Z. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. European Journal of Clinical Pharmacology 2007, 63(12):1135-1141.
    • (2007) European Journal of Clinical Pharmacology , vol.63 , Issue.12 , pp. 1135-1141
    • Miao, L.1    Yang, J.2    Huang, C.3    Shen, Z.4
  • 12
    • 60849097257 scopus 로고    scopus 로고
    • Estimation of the warfarin dose with clinical and pharmacogenetic data
    • The International Warfarin Pharmacogenetics Consortium
    • The International Warfarin Pharmacogenetics Consortium Estimation of the warfarin dose with clinical and pharmacogenetic data. New England Journal of Medicine 2009, 360:753-764.
    • (2009) New England Journal of Medicine , vol.360 , pp. 753-764
  • 13
    • 59649117935 scopus 로고    scopus 로고
    • The largest prospective warfarin-treated cohort supports genetic forecasting
    • Wadelius M., Chen L.Y., Lindh J.D., Eriksson N., Ghori M.J.R., Bumpstead S., et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 2009, 113:784-792.
    • (2009) Blood , vol.113 , pp. 784-792
    • Wadelius, M.1    Chen, L.Y.2    Lindh, J.D.3    Eriksson, N.4    Ghori, M.J.R.5    Bumpstead, S.6
  • 14
    • 73049115063 scopus 로고    scopus 로고
    • Prediction of the warfarin maintenance dose after completion of the 10mg initiation nomogram: do we really need genotyping?
    • Le Gal G., Carrier M., Tierney S., Majeed H., Rodger M., Wells P.S. Prediction of the warfarin maintenance dose after completion of the 10mg initiation nomogram: do we really need genotyping?. Journal of Thrombosis and Haemostasis 2010, 8(1):90-94.
    • (2010) Journal of Thrombosis and Haemostasis , vol.8 , Issue.1 , pp. 90-94
    • Le Gal, G.1    Carrier, M.2    Tierney, S.3    Majeed, H.4    Rodger, M.5    Wells, P.S.6
  • 15
    • 38849181014 scopus 로고    scopus 로고
    • Genetic testing for warfarin dosing? Not yet ready for prime time
    • Bussey H.I., Wittkowsky A.K., Hylek E.M., Walker M.B. Genetic testing for warfarin dosing? Not yet ready for prime time. Pharmacotherapy 2008, 28:141-143.
    • (2008) Pharmacotherapy , vol.28 , pp. 141-143
    • Bussey, H.I.1    Wittkowsky, A.K.2    Hylek, E.M.3    Walker, M.B.4
  • 19
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 21
    • 0033082809 scopus 로고    scopus 로고
    • Warfarin therapy: evolving strategies in anticoagulation
    • Horton J.D., Bushwick B.M. Warfarin therapy: evolving strategies in anticoagulation. American Family Physician 1999, 59:635-646.
    • (1999) American Family Physician , vol.59 , pp. 635-646
    • Horton, J.D.1    Bushwick, B.M.2
  • 22
    • 58749085951 scopus 로고    scopus 로고
    • Oral anticoagulant treatment in management of elderly patients with atrial fibrillation: is it beneficial or detrimental?
    • Setiabudi E., Alwi I., Setiati S. Oral anticoagulant treatment in management of elderly patients with atrial fibrillation: is it beneficial or detrimental?. Acta Medica Indonesiana 2008, 40:40-47.
    • (2008) Acta Medica Indonesiana , vol.40 , pp. 40-47
    • Setiabudi, E.1    Alwi, I.2    Setiati, S.3
  • 23
    • 77957275340 scopus 로고    scopus 로고
    • Warfarin-indications, risks and drug interactions
    • Tadros R., Shakib S. Warfarin-indications, risks and drug interactions. Australian Family Physician 2010, 39:476-479.
    • (2010) Australian Family Physician , vol.39 , pp. 476-479
    • Tadros, R.1    Shakib, S.2
  • 24
    • 45949103309 scopus 로고    scopus 로고
    • Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th ed.)
    • Ansell J., Hirsh J., Hylek E., Jacobson A., Crowther M., Palareti G. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th ed.). Chest 2008, 133:160S-198S.
    • (2008) Chest , vol.133
    • Ansell, J.1    Hirsh, J.2    Hylek, E.3    Jacobson, A.4    Crowther, M.5    Palareti, G.6
  • 25
    • 69749093331 scopus 로고    scopus 로고
    • Bleeding with anticoagulation therapy-who is at risk, and how best to identify such patients
    • Palareti G., Cosmi B. Bleeding with anticoagulation therapy-who is at risk, and how best to identify such patients. Journal of Thrombosis and Haemostasis 2009, 102:268-278.
    • (2009) Journal of Thrombosis and Haemostasis , vol.102 , pp. 268-278
    • Palareti, G.1    Cosmi, B.2
  • 26
    • 18244400400 scopus 로고    scopus 로고
    • Is INR between 2.0 and 3.0 the optimal level for Chinese patients on warfarin therapy for moderate-intensity anticoagulation?
    • You J.H., Chan F.W., Wong R.S., Cheng G. Is INR between 2.0 and 3.0 the optimal level for Chinese patients on warfarin therapy for moderate-intensity anticoagulation?. British Journal of Clinical Pharmacology 2005, 59:582-587.
    • (2005) British Journal of Clinical Pharmacology , vol.59 , pp. 582-587
    • You, J.H.1    Chan, F.W.2    Wong, R.S.3    Cheng, G.4
  • 27
    • 33847006936 scopus 로고    scopus 로고
    • Comparison of outcomes among patients randomized to warfarin therapy according to anticoagulant control-results from SPORTIF III and IV
    • White H.D., Gruber M., Feyzi J. Comparison of outcomes among patients randomized to warfarin therapy according to anticoagulant control-results from SPORTIF III and IV. Archives of Internal Medicine 2007, 167:239-245.
    • (2007) Archives of Internal Medicine , vol.167 , pp. 239-245
    • White, H.D.1    Gruber, M.2    Feyzi, J.3
  • 29
    • 0034547894 scopus 로고    scopus 로고
    • Estimating drug/plasma concentration levels by applying neural networks to pharmacokinetic data sets
    • Tolle K.M., Chen H., Chow H. Estimating drug/plasma concentration levels by applying neural networks to pharmacokinetic data sets. Decision Support Systems 2000, 30:139-152.
    • (2000) Decision Support Systems , vol.30 , pp. 139-152
    • Tolle, K.M.1    Chen, H.2    Chow, H.3
  • 32
    • 0004022287 scopus 로고
    • Center for Computational Research in Economics and Management Science, Cambridge, MA
    • Parker D.B. Learning-logic. MIT Technical Report TR-47 1985, Center for Computational Research in Economics and Management Science, Cambridge, MA.
    • (1985) Learning-logic. MIT Technical Report TR-47
    • Parker, D.B.1
  • 35
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Efron B. Bootstrap methods: another look at the jackknife. The Annals of Statistics 1979, 7:1-26.
    • (1979) The Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 37
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Dzeroski S., Zenko B. Is combining classifiers with stacking better than selecting the best one?. Journal of Machine Learning Research 2004, 54:255-273.
    • (2004) Journal of Machine Learning Research , vol.54 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.