메뉴 건너뛰기




Volumn 99, Issue 3, 2012, Pages 511-531

Nonparametric estimation of diffusions: A differential equations approach

Author keywords

Finite element method; Gaussian measure; Inverse problem; Local time; Markov chain Monte Carlo; Markov process

Indexed keywords


EID: 84865519492     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/ass034     Document Type: Article
Times cited : (76)

References (41)
  • 1
    • 0242670422 scopus 로고    scopus 로고
    • Testing continuous-time models of the spot interest rate
    • ÄIT-SAHALIA, Y. (1996). Testing continuous-time models of the spot interest rate. Rev. Finan. Studies 9, 385-426.
    • (1996) Rev. Finan. Studies , vol.9 , pp. 385-426
    • Äit-Sahalia, Y.1
  • 2
    • 0036216388 scopus 로고    scopus 로고
    • Maximum likelihood estimation of discretely sampled diffusions: A closed-form approximation
    • ÄIT-SAHALIA, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation. Econometrica 70, 223-62.
    • (2002) Econometrica , vol.70 , pp. 223-262
    • Äit-Sahalia, Y.1
  • 3
    • 0037273358 scopus 로고    scopus 로고
    • Fully nonparametric estimation of scalar diffusion models
    • BANDI, F. M. & PHILLIPS, P. C. B. (2003). Fully nonparametric estimation of scalar diffusion models. Econometrica 71, 241-83.
    • (2003) Econometrica , vol.71 , pp. 241-283
    • Bandi, F.M.1    Phillips, P.C.B.2
  • 4
    • 33646690994 scopus 로고    scopus 로고
    • Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes
    • BESKOS, A., PAPASPILIOPOULOS, O., ROBERTS, G. O. & FEARNHEAD, P. (2006). Exact and computationally efficient likelihood-based estimation for discretely observed diffusion processes. J. R. Statist. Soc. B 68, 333-82.
    • (2006) J. R. Statist. Soc. B , vol.68 , pp. 333-382
    • Beskos, A.1    Papaspiliopoulos, O.2    Roberts, G.O.3    Fearnhead, P.4
  • 10
    • 47249110597 scopus 로고    scopus 로고
    • Penalized nonparametric mean square estimation of the coefficients of diffusion processes
    • COMTE, F., GENON-CATALOT, V. & ROZENHOLC, Y. (2007). Penalized nonparametric mean square estimation of the coefficients of diffusion processes. Bernoulli 13, 514-43.
    • (2007) Bernoulli , vol.13 , pp. 514-543
    • Comte, F.1    Genon-Catalot, V.2    Rozenholc, Y.3
  • 14
    • 0036339461 scopus 로고    scopus 로고
    • Numerical techniques for maximum likelihood estimation of continuoustime diffusion processes
    • With comments and a reply by the authors
    • DURHAM, G. B. & GALLANT, A. R. (2002). Numerical techniques for maximum likelihood estimation of continuoustime diffusion processes. J. Bus. Econ. Statist. 20, 297-338. With comments and a reply by the authors.
    • (2002) J. Bus. Econ. Statist , vol.20 , pp. 297-338
    • Durham, G.B.1    Gallant, A.R.2
  • 18
    • 35549009345 scopus 로고    scopus 로고
    • Bayesian inference for nonlinear multivariate diffusion models observed with error
    • GOLIGHTLY, A. & WILKINSON, D. J. (2008). Bayesian inference for nonlinear multivariate diffusion models observed with error. Comp. Statist. Data Anal. 52, 1674-93.
    • (2008) Comp. Statist. Data Anal. , vol.52 , pp. 1674-1693
    • Golightly, A.1    Wilkinson, D.J.2
  • 19
    • 34248634668 scopus 로고    scopus 로고
    • Analysis of SPDEs arising in path sampling part I: The Gaussian case
    • HAIRER, M., STUART, A. M., VOSS, J. & WIBERG, P. (2005). Analysis of SPDEs arising in path sampling part I: the Gaussian case. Comm. Math. Sci. 3, 587-603.
    • (2005) Comm. Math. Sci. , vol.3 , pp. 587-603
    • Hairer, M.1    Stuart, A.M.2    Voss, J.3    Wiberg, P.4
  • 20
    • 79953289665 scopus 로고    scopus 로고
    • Sampling conditioned hypoelliptic diffusions
    • HAIRER, M., STUART, A. M. & VOSS, J. (2011). Sampling conditioned hypoelliptic diffusions. Ann. Appl. Prob. 21, 669-98.
    • (2011) Ann. Appl. Prob. , vol.21 , pp. 669-698
    • Hairer, M.1    Stuart, A.M.2    Voss, J.3
  • 21
    • 18444379363 scopus 로고    scopus 로고
    • Bayesian analysis of single-molecule experimental data
    • KOU, S. C., XIE, X. S. & LIU, J. S. (2005). Bayesian analysis of single-molecule experimental data. Appl. Statist. 54, 469-506.
    • (2005) Appl. Statist , vol.54 , pp. 469-506
    • Kou, S.C.1    Xie, X.S.2    Liu, J.S.3
  • 23
    • 13244270427 scopus 로고    scopus 로고
    • Analysis 2nd ed
    • Providence, RI: American Mathematical Society
    • LIEB, E. H. & LOSS, M. (2001). Analysis, 2nd ed. Graduate Studies in Mathematics 14. Providence, RI: American Mathematical Society.
    • (2001) Graduate Studies in Mathematics 14
    • Lieb, E.H.1    Loss, M.2
  • 24
    • 79961050814 scopus 로고    scopus 로고
    • An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach
    • With discussions and a reply by the authors
    • LINDGREN, F., RUE, H. & LINDSTR ̈OM, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Statist. Soc. B 73, 423-498.With discussions and a reply by the authors.
    • (2011) J. R. Statist. Soc. B , vol.73 , pp. 423-498
    • Lindgren, F.1    Rue, H.2    Lindström, J.3
  • 25
    • 34248523110 scopus 로고    scopus 로고
    • Stochastic spectral methods for efficient Bayesian solution of inverse problems
    • MARZOUK, Y. M., NAJM, H. N. & RAHN, L. A. (2007). Stochastic spectral methods for efficient Bayesian solution of inverse problems. J. Comput. Phys. 224, 560-86.
    • (2007) J. Comput. Phys. , vol.224 , pp. 560-586
    • Marzouk, Y.M.1    Najm, H.N.2    Rahn, L.A.3
  • 28
    • 34249101736 scopus 로고    scopus 로고
    • A general framework for the parametrization of hierarchical models
    • PAPASPILIOPOULOS, O., ROBERTS, G. O. & SK ̈OLD, M. (2007). A general framework for the parametrization of hierarchical models. Statist. Sci. 22, 59-73.
    • (2007) Statist. Sci. , vol.22 , pp. 59-73
    • Papaspiliopoulos, O.1    Roberts, G.O.2    Sk̈old, M.3
  • 30
    • 0003812051 scopus 로고    scopus 로고
    • Statistical Inference for Diffusion Type Processes
    • London: Edward Arnold
    • PRAKASA RAO, B. L. S. (1999). Statistical Inference for Diffusion Type Processes. Kendall's Library of Statistics 8. London: Edward Arnold.
    • (1999) Kendall's Library of Statistics 8
    • Prakasa Rao, B.L.S.1
  • 32
    • 10244252366 scopus 로고    scopus 로고
    • On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm
    • ROBERTS, G. O. & STRAMER, O. (2001). On inference for partially observed nonlinear diffusion models using the Metropolis-Hastings algorithm. Biometrika 88, 603-21.
    • (2001) Biometrika , vol.88 , pp. 603-621
    • Roberts, G.O.1    Stramer, O.2
  • 35
    • 77951793592 scopus 로고    scopus 로고
    • Inverse problems: A Bayesian perspective
    • STUART, A. M. (2010). Inverse problems: a Bayesian perspective. Acta Numer. 19, 451-559.
    • (2010) Acta Numer. , vol.19 , pp. 451-559
    • Stuart, A.M.1
  • 36
    • 84865509307 scopus 로고    scopus 로고
    • Consistent nonparametric Bayesian inference for discretely observed diffusions
    • VAN DER MEULEN, F. & VAN ZANTEN, H. (2012). Consistent nonparametric Bayesian inference for discretely observed diffusions. Bernoulli, to appear.
    • (2012) Bernoulli, to Appear
    • Van Der Meulen, F.1    Van Zanten, H.2
  • 37
    • 51049088387 scopus 로고    scopus 로고
    • Rates of contraction of posterior distributions based on Gaussian process priors
    • VAN ZANTEN, H. & VAN DER VAART, A. (2008). Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist. 36, 1435-63.
    • (2008) Ann. Statist , vol.36 , pp. 1435-1463
    • Van Zanten, H.1    Van Der Vaart, A.2
  • 38
    • 0003241883 scopus 로고
    • Spline Models for Observational Data
    • WAHBA, G. (1990). Spline Models for Observational Data. Philadelphia: SIAM.
    • (1990) Philadelphia: SIAM
    • Wahba, G.1
  • 40
    • 79953144426 scopus 로고    scopus 로고
    • A Bayesian framework for modeling multidimensional diffusion processes with nonlinear drift based on nonlinear and incomplete observations
    • WU, H. & NÓE, F. (2011). A Bayesian framework for modeling multidimensional diffusion processes with nonlinear drift based on nonlinear and incomplete observations. Phys. Rev. E 83, 036705.
    • (2011) Phys. Rev. e , vol.83 , pp. 036705
    • U, H.W.1    Nóe, F.2
  • 41
    • 0034347381 scopus 로고    scopus 로고
    • Bayesian aspects of some nonparametric problems
    • ZHAO, L. (2000). Bayesian aspects of some nonparametric problems. Ann. Statist. 28, 532-52.
    • (2000) Ann. Statist. , vol.28 , pp. 532-552
    • Zhao, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.