-
1
-
-
81855194981
-
Clique-based facets for the precedence constrained knapsack problem
-
Netherlands
-
N. Boland, C. Fricke, G. Froyland, R. Sotirov, Clique-based facets for the precedence constrained knapsack problem, Technical report, Tilburg University Repository, Netherlands, http://arno.uvt.nl/oai/wo.uvt.nl.cgi, 2005.
-
(2005)
Technical Report, Tilburg University Repository
-
-
Boland, N.1
Fricke, C.2
Froyland, G.3
Sotirov, R.4
-
2
-
-
0032108328
-
A threshold of ln n for approximating set cover
-
Uriel Feige A threshold of ln n for approximating set cover J. ACM 45 4 1998 634 652
-
(1998)
J. ACM
, vol.45
, Issue.4
, pp. 634-652
-
-
Feige, U.1
-
3
-
-
84989754354
-
Note: On the set-union knapsack problem
-
Olivier Goldschmidt, David Nehme, and Gang Yu Note: On the set-union knapsack problem Naval Res. Logist. 41 6 1994 833 842
-
(1994)
Naval Res. Logist.
, vol.41
, Issue.6
, pp. 833-842
-
-
Goldschmidt, O.1
Nehme, D.2
Yu, G.3
-
5
-
-
77955554506
-
The minimum k-colored subgraph problem in haplotyping and DNA primer selection
-
Jan.
-
M. Hajiaghayi, K. Jain, K. Konwar, L. Lau, The minimum k-colored subgraph problem in haplotyping and DNA primer selection, in: Proc. Int. Workshop on Bioinformatics Research and Applications, Jan. 2006.
-
(2006)
Proc. Int. Workshop on Bioinformatics Research and Applications
-
-
Hajiaghayi, M.1
Jain, K.2
Konwar, K.3
Lau, L.4
-
7
-
-
0016560084
-
Fast approximation algorithms for the knapsack and sum of subset problems
-
Oscar H. Ibarra, and Chul E. Kim Fast approximation algorithms for the knapsack and sum of subset problems J. ACM 22 October 1975 463 468
-
(1975)
J. ACM
, vol.22
, pp. 463-468
-
-
Ibarra, O.H.1
Kim, C.E.2
-
8
-
-
0020706194
-
On knapsacks, partitions, and a new dynamic programming technique for trees
-
D.S. Johnson, and K.A. Niemi On knapsacks, partitions, and a new dynamic programming technique for trees Math. Oper. Res. 8 1 1983 1 14
-
(1983)
Math. Oper. Res.
, vol.8
, Issue.1
, pp. 1-14
-
-
Johnson, D.S.1
Niemi, K.A.2
-
10
-
-
0032614948
-
The budgeted maximum coverage problem
-
Samir Khuller, Anna Moss, and Joseph (Seffi) Naor The budgeted maximum coverage problem Inform. Process. Lett. 70 1 1999 39 45
-
(1999)
Inform. Process. Lett.
, vol.70
, Issue.1
, pp. 39-45
-
-
Khuller, S.1
Moss, A.2
Naor, J.3
-
11
-
-
33947414090
-
Partially ordered knapsack and applications to scheduling
-
S.G. Kolliopoulos, and G. Steiner Partially ordered knapsack and applications to scheduling Discrete Appl. Math. 155 8 2007 889 897
-
(2007)
Discrete Appl. Math.
, vol.155
, Issue.8
, pp. 889-897
-
-
Kolliopoulos, S.G.1
Steiner, G.2
-
12
-
-
70349100783
-
Maximizing submodular set functions subject to multiple linear constraints
-
Society for Industrial and Applied Mathematics Philadelphia, PA, USA
-
Ariel Kulik, Hadas Shachnai, and Tami Tamir Maximizing submodular set functions subject to multiple linear constraints Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA09 2009 Society for Industrial and Applied Mathematics Philadelphia, PA, USA 545 554
-
(2009)
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA09
, pp. 545-554
-
-
Kulik, A.1
Shachnai, H.2
Tamir, T.3
-
13
-
-
70350683773
-
Non-monotone submodular maximization under matroid and knapsack constraints
-
ACM New York, NY, USA
-
Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko Non-monotone submodular maximization under matroid and knapsack constraints Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC09 2009 ACM New York, NY, USA 323 332
-
(2009)
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC09
, pp. 323-332
-
-
Lee, J.1
Mirrokni, V.S.2
Nagarajan, V.3
Sviridenko, M.4
-
15
-
-
0142029543
-
A note on maximizing a submodular set function subject to a knapsack constraint
-
Maxim Sviridenko A note on maximizing a submodular set function subject to a knapsack constraint Oper. Res. Lett. 32 1 2004 41 43
-
(2004)
Oper. Res. Lett.
, vol.32
, Issue.1
, pp. 41-43
-
-
Sviridenko, M.1
|