-
2
-
-
0004080182
-
-
Springer-Verlag, Berlin, Heidelberg
-
Jikov V., Kozlov S., Oleinik O. Homogenization of Differential Operators and Integral Functionals 1994, Springer-Verlag, Berlin, Heidelberg.
-
(1994)
Homogenization of Differential Operators and Integral Functionals
-
-
Jikov, V.1
Kozlov, S.2
Oleinik, O.3
-
3
-
-
0039982148
-
Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients
-
Hou T., Wu X., Cai Z. Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 1999, 68(227):913-943.
-
(1999)
Math. Comput.
, vol.68
, Issue.227
, pp. 913-943
-
-
Hou, T.1
Wu, X.2
Cai, Z.3
-
5
-
-
34249311837
-
Multiscale modeling of physical phenomena: adaptive control of models
-
Oden J., Prudhomme S., Romkes A., Bauman P. Multiscale modeling of physical phenomena: adaptive control of models. SIAM J. Sci. Comput. 2006, 28(6):2359-2389.
-
(2006)
SIAM J. Sci. Comput.
, vol.28
, Issue.6
, pp. 2359-2389
-
-
Oden, J.1
Prudhomme, S.2
Romkes, A.3
Bauman, P.4
-
6
-
-
17644363709
-
High-dimensional finite elements for elliptic problems with multiple scales
-
Hoang V.H., Schwab christoph High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 2005, 3(1):168-194.
-
(2005)
Multiscale Model. Simul.
, vol.3
, Issue.1
, pp. 168-194
-
-
Hoang, V.H.1
Schwab, C.2
-
7
-
-
77955306909
-
Multi-scale computational homogenization: trends and challenges
-
Geers M., Kouznetsova V., Brekelmans W. Multi-scale computational homogenization: trends and challenges. J. Comput. Appl. Math. 2010, 234:2175-2182.
-
(2010)
J. Comput. Appl. Math.
, vol.234
, pp. 2175-2182
-
-
Geers, M.1
Kouznetsova, V.2
Brekelmans, W.3
-
8
-
-
85128805678
-
The heterogeneous multiscale methods
-
E W., Engquist B. The heterogeneous multiscale methods. Commun. Math. Sci. 2003, 1(1):87-132.
-
(2003)
Commun. Math. Sci.
, vol.1
, Issue.1
, pp. 87-132
-
-
E, W.1
Engquist, B.2
-
9
-
-
68049097915
-
The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs
-
Abdulle A. The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs. GAKUTO Int. Ser. Math. Sci. Appl. 2009, 31:135-184.
-
(2009)
GAKUTO Int. Ser. Math. Sci. Appl.
, vol.31
, pp. 135-184
-
-
Abdulle, A.1
-
10
-
-
33645988923
-
On a priori error analysis of fully discrete heterogeneous multiscale FEM
-
Abdulle A. On a priori error analysis of fully discrete heterogeneous multiscale FEM. SIAM, Multiscale Model. Simul. 2005, 4(2):447-459.
-
(2005)
SIAM, Multiscale Model. Simul.
, vol.4
, Issue.2
, pp. 447-459
-
-
Abdulle, A.1
-
11
-
-
55249110253
-
Finite element heterogeneous multiscale methods with near optimal computational complexity
-
Abdulle A., Engquist B. Finite element heterogeneous multiscale methods with near optimal computational complexity. SIAM, Multiscale Model. Simul. 2007, 6(4):1059-1084.
-
(2007)
SIAM, Multiscale Model. Simul.
, vol.6
, Issue.4
, pp. 1059-1084
-
-
Abdulle, A.1
Engquist, B.2
-
12
-
-
77956978725
-
Heterogeneous multiscale finite element method with novel numerical integration schemes
-
Du R., Ming P. Heterogeneous multiscale finite element method with novel numerical integration schemes. Commun. Math. Sci. 2010, 8(4):863-885.
-
(2010)
Commun. Math. Sci.
, vol.8
, Issue.4
, pp. 863-885
-
-
Du, R.1
Ming, P.2
-
13
-
-
68949159804
-
A posteriori error analysis of the heterogeneous multiscale method for homogenization problems
-
Abdulle A., Nonnenmacher A. A posteriori error analysis of the heterogeneous multiscale method for homogenization problems. C.R. Math. Acad. Sci. Paris 2009, 347(17-18):1081-1086.
-
(2009)
C.R. Math. Acad. Sci. Paris
, vol.347
, Issue.17-18
, pp. 1081-1086
-
-
Abdulle, A.1
Nonnenmacher, A.2
-
14
-
-
79958714011
-
Adaptive finite element heterogeneous multiscale method for homogenization problems
-
Abdulle A., Nonnenmacher A. Adaptive finite element heterogeneous multiscale method for homogenization problems. Comput. Methods Appl. Mech. Eng. 2011, 200(37-40):2710-2726.
-
(2011)
Comput. Methods Appl. Mech. Eng.
, vol.200
, Issue.37-40
, pp. 2710-2726
-
-
Abdulle, A.1
Nonnenmacher, A.2
-
15
-
-
0015004503
-
An approximate analysis technique for design calculations
-
Fox R.L., Miura H. An approximate analysis technique for design calculations. AIAA J. 1971, 9(1):177-179.
-
(1971)
AIAA J.
, vol.9
, Issue.1
, pp. 177-179
-
-
Fox, R.L.1
Miura, H.2
-
16
-
-
0020547404
-
On the error behavior of the reduced basis technique for nonlinear finite element approximations
-
Fink J.P., Rheinboldt W.C. On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z. Angew. Math. Mech. 1983, 63:21-28.
-
(1983)
Z. Angew. Math. Mech.
, vol.63
, pp. 21-28
-
-
Fink, J.P.1
Rheinboldt, W.C.2
-
17
-
-
0019242096
-
Recent advances in reduction methods for nonlinear problems
-
Noor A.K. Recent advances in reduction methods for nonlinear problems. Comput. Struct. 1981, 13:31-44.
-
(1981)
Comput. Struct.
, vol.13
, pp. 31-44
-
-
Noor, A.K.1
-
18
-
-
0003321083
-
Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bounds methods
-
Prud'homme C., Rovas D.V., Veroy K., Machiels L., Maday Y., Patera A.T., Turinici G. Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bounds methods. J. Fluids Eng. 2002, 124:70-80.
-
(2002)
J. Fluids Eng.
, vol.124
, pp. 70-80
-
-
Prud'homme, C.1
Rovas, D.V.2
Veroy, K.3
Machiels, L.4
Maday, Y.5
Patera, A.T.6
Turinici, G.7
-
19
-
-
67349245674
-
Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations, MIT Pappalardo Graduate Monographs in Mechanical Engineering
-
in press, (tentative rubric)
-
A.T. Patera, G. Rozza, Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations, MIT Pappalardo Graduate Monographs in Mechanical Engineering, in press, (tentative rubric).
-
-
-
Patera, A.T.1
Rozza, G.2
-
20
-
-
53749107686
-
Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations
-
Rozza G., Huynh D., Patera A.T. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods. Eng. 2008, 15:229-275.
-
(2008)
Arch. Comput. Methods. Eng.
, vol.15
, pp. 229-275
-
-
Rozza, G.1
Huynh, D.2
Patera, A.T.3
-
21
-
-
53349166973
-
Reduced-Basis approach for homogenization beyond the periodic setting
-
Boyaval S. Reduced-Basis approach for homogenization beyond the periodic setting. Multiscale Model. Simul. 2008, 7(1):466-494.
-
(2008)
Multiscale Model. Simul.
, vol.7
, Issue.1
, pp. 466-494
-
-
Boyaval, S.1
-
22
-
-
78549283172
-
Mathematical modeling and simulation for material science
-
PhD thesis, University Paris Est
-
S. Boyaval, Mathematical modeling and simulation for material science, PhD thesis, University Paris Est, 2009.
-
(2009)
-
-
Boyaval, S.1
-
23
-
-
53349103005
-
A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales
-
Nguyen N.C. A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales. J. Comput. Phys. 2008, 227:9807-9822.
-
(2008)
J. Comput. Phys.
, vol.227
, pp. 9807-9822
-
-
Nguyen, N.C.1
-
24
-
-
0001156303
-
Estimations des coefficients homogénéisés
-
Springer-Verlag, Berlin
-
Tartar L. Estimations des coefficients homogénéisés. Lectures Notes in Mathematics 1977, vol. 704. Springer-Verlag, Berlin.
-
(1977)
Lectures Notes in Mathematics
, vol.704
-
-
Tartar, L.1
-
25
-
-
0002590226
-
The combined effect of curved boundaries and numerical integration in isoparametric finite element methods
-
Ciarlet P., Raviart P. The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. Math. Foundation FEM Appl. PDE 1972, 409-474.
-
(1972)
Math. Foundation FEM Appl. PDE
, pp. 409-474
-
-
Ciarlet, P.1
Raviart, P.2
-
26
-
-
13644268174
-
Analysis of the heterogeneous multiscale method for elliptic homogenization problems
-
E W., Ming P., Zhang P. Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Amer. Math. Soc. 2005, 18(1):121-156.
-
(2005)
J. Amer. Math. Soc.
, vol.18
, Issue.1
, pp. 121-156
-
-
E, W.1
Ming, P.2
Zhang, P.3
-
27
-
-
17644387561
-
Heterogeneous Multiscale FEM for diffusion problems on rough surfaces
-
Abdulle A., Schwab C. Heterogeneous Multiscale FEM for diffusion problems on rough surfaces. SIAM, Multiscale Model. Simul. 2005, 3(1):195-220.
-
(2005)
SIAM, Multiscale Model. Simul.
, vol.3
, Issue.1
, pp. 195-220
-
-
Abdulle, A.1
Schwab, C.2
-
28
-
-
84858958535
-
Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales
-
Abdulle A. Discontinuous Galerkin finite element heterogeneous multiscale method for elliptic problems with multiple scales. Math. Comput. 2012, 81(278):687-713.
-
(2012)
Math. Comput.
, vol.81
, Issue.278
, pp. 687-713
-
-
Abdulle, A.1
-
29
-
-
84859723900
-
A priori and a posteriori error analysis for numerical homogenization: a unified framework
-
Abdulle A. A priori and a posteriori error analysis for numerical homogenization: a unified framework. Ser. Contemp. Appl. Math. CAM 2011, 16:280-305.
-
(2011)
Ser. Contemp. Appl. Math. CAM
, vol.16
, pp. 280-305
-
-
Abdulle, A.1
-
30
-
-
15744385841
-
An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations
-
Barrault M., Maday Y., Nguyen N., Patera A. An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. C.R. Acad. Sci. Paris Ser.I 2004, 339:667-672.
-
(2004)
C.R. Acad. Sci. Paris Ser.I
, vol.339
, pp. 667-672
-
-
Barrault, M.1
Maday, Y.2
Nguyen, N.3
Patera, A.4
-
31
-
-
57149106751
-
A general multipurpose interpolation procedure: the magic points
-
Maday Y., Nguyen N.C., Patera A.T., Pau G. A general multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 2009, 8(1):383-404.
-
(2009)
Commun. Pure Appl. Anal.
, vol.8
, Issue.1
, pp. 383-404
-
-
Maday, Y.1
Nguyen, N.C.2
Patera, A.T.3
Pau, G.4
-
32
-
-
84859722093
-
Analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic homogenization problems
-
submitted for publication.
-
A. Abdulle, G. Vilmart, Analysis of the finite element heterogeneous multiscale method for nonmonotone elliptic homogenization problems, submitted for publication.
-
-
-
Abdulle, A.1
Vilmart, G.2
-
33
-
-
80054010824
-
The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods
-
Abdulle A., Vilmart G. The effect of numerical integration in the finite element method for nonmonotone nonlinear elliptic problems with application to numerical homogenization methods. C.R. Acad. Sci. Paris, Ser. I 2011, 349(19-20):1041-1046.
-
(2011)
C.R. Acad. Sci. Paris, Ser. I
, vol.349
, Issue.19-20
, pp. 1041-1046
-
-
Abdulle, A.1
Vilmart, G.2
-
34
-
-
36148955493
-
A successive constraint linear optimaization method for lower bounds of parametric coercivity and inf-sup stability constants
-
Huynh D., Rozza G., Sen S., Patera A. A successive constraint linear optimaization method for lower bounds of parametric coercivity and inf-sup stability constants. C.R. Math. Acad. Sci. Paris, Ser.I 2007, 345:473-478.
-
(2007)
C.R. Math. Acad. Sci. Paris, Ser.I
, vol.345
, pp. 473-478
-
-
Huynh, D.1
Rozza, G.2
Sen, S.3
Patera, A.4
-
35
-
-
79960391988
-
Convergence rates for greedy algorithms in reduced basis methods
-
Binev P., Cohen A., Dahmen W., Devore R., Petrova G., Wojtaszczyk P. Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 2011, 43:1457-1472.
-
(2011)
SIAM J. Math. Anal.
, vol.43
, pp. 1457-1472
-
-
Binev, P.1
Cohen, A.2
Dahmen, W.3
Devore, R.4
Petrova, G.5
Wojtaszczyk, P.6
-
36
-
-
84855846712
-
A priori convergence of the greedy algorithm for the parametrized reduced basis
-
Buffa A., Maday Y., Patera A.T., Prud'homme C., Turinici G. A priori convergence of the greedy algorithm for the parametrized reduced basis. ESAIM: M2AN 2012, 46:595-603.
-
(2012)
ESAIM: M2AN
, vol.46
, pp. 595-603
-
-
Buffa, A.1
Maday, Y.2
Patera, A.T.3
Prud'homme, C.4
Turinici, G.5
-
37
-
-
68049087929
-
A short and versatile finite element multiscale code for homogenization problem
-
Abdulle A., Nonnenmacher A. A short and versatile finite element multiscale code for homogenization problem. Comput. Methods Appl. Mech. Eng. 2009, 198(37-40):2839-2859.
-
(2009)
Comput. Methods Appl. Mech. Eng.
, vol.198
, Issue.37-40
, pp. 2839-2859
-
-
Abdulle, A.1
Nonnenmacher, A.2
-
38
-
-
85190180153
-
-
Sandia National Lab,
-
Sandia National Lab, 1997-2010. http://cubit.sandia.gov.
-
(1997)
-
-
|