메뉴 건너뛰기




Volumn 97, Issue , 2012, Pages 278-296

Data field-based mechanism for three-dimensional thresholding

Author keywords

Data field; Entropy; Image segmentation; Image thresholding; Three dimensional thresholding

Indexed keywords

DATA FIELDS; IMAGE THRESHOLDING; OPTIMAL THRESHOLD; PHYSICAL FIELD; REAL-TIME APPLICATION; SEGMENTATION QUALITY; SELF-ADAPTIVE; THRESHOLDING; TIME COMPLEXITY;

EID: 84865346681     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.02.039     Document Type: Article
Times cited : (4)

References (43)
  • 1
    • 80052924816 scopus 로고    scopus 로고
    • Image segmentation and bias correction via an improved level set method
    • Chen Y., Zhang J., Li C., Mishra A., Yang J. Image segmentation and bias correction via an improved level set method. Neurocomputing 2011, 74(17):3520-3530.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3520-3530
    • Chen, Y.1    Zhang, J.2    Li, C.3    Mishra, A.4    Yang, J.5
  • 2
    • 80052917247 scopus 로고    scopus 로고
    • A fast recursive algorithm based on fuzzy 2-partition entropy approach for threshold selection
    • Tang Y., Mu W., Zhang Y., Zhang X. A fast recursive algorithm based on fuzzy 2-partition entropy approach for threshold selection. Neurocomputing 2011, 74(17):3072-3078.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3072-3078
    • Tang, Y.1    Mu, W.2    Zhang, Y.3    Zhang, X.4
  • 3
    • 78049328476 scopus 로고    scopus 로고
    • Operator context scanning to support high segmentation rates for real time license plate recognition
    • Giannoukos I., Anagnostopoulos C.-N., Loumos V., Kayafas E. Operator context scanning to support high segmentation rates for real time license plate recognition. Pattern Recogn. 2010, 43(11):3866-3878.
    • (2010) Pattern Recogn. , vol.43 , Issue.11 , pp. 3866-3878
    • Giannoukos, I.1    Anagnostopoulos, C.-N.2    Loumos, V.3    Kayafas, E.4
  • 6
    • 17644395280 scopus 로고    scopus 로고
    • Seeded region growing: an extensive and comparative study
    • Fan J., Zeng G., Body M., Haci M.-S. Seeded region growing: an extensive and comparative study. Pattern Recogn. Lett. 2005, 26(8):1139-1156.
    • (2005) Pattern Recogn. Lett. , vol.26 , Issue.8 , pp. 1139-1156
    • Fan, J.1    Zeng, G.2    Body, M.3    Haci, M.-S.4
  • 8
    • 0027658896 scopus 로고
    • A review on image segmentation techniques
    • Pal N.R., Pal S.K. A review on image segmentation techniques. Pattern Recogn. 1993, 26(9):1277-1294.
    • (1993) Pattern Recogn. , vol.26 , Issue.9 , pp. 1277-1294
    • Pal, N.R.1    Pal, S.K.2
  • 9
    • 0030216623 scopus 로고    scopus 로고
    • A survey on evaluation methods for image segmentation
    • Zhang Y. A survey on evaluation methods for image segmentation. Pattern Recogn. 1996, 29(8):1335-1346.
    • (1996) Pattern Recogn. , vol.29 , Issue.8 , pp. 1335-1346
    • Zhang, Y.1
  • 10
    • 1842422015 scopus 로고    scopus 로고
    • Survey over image thresholding techniques and quantitative performance evaluation
    • Sezgin M., Sankur B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13(1):146-165.
    • (2004) J. Electron. Imaging , vol.13 , Issue.1 , pp. 146-165
    • Sezgin, M.1    Sankur, B.2
  • 11
    • 67349139879 scopus 로고    scopus 로고
    • A thresholding method based on two-dimensional fractional differentiation
    • Nakib A., Oulhadj H., Siarry P. A thresholding method based on two-dimensional fractional differentiation. Image Vision Comput. 2009, 27(9):1343-1357.
    • (2009) Image Vision Comput. , vol.27 , Issue.9 , pp. 1343-1357
    • Nakib, A.1    Oulhadj, H.2    Siarry, P.3
  • 13
    • 0032017754 scopus 로고    scopus 로고
    • A gaussian-mixture-based image segmentation algorithm
    • Gupta L., Sortrakul T. A gaussian-mixture-based image segmentation algorithm. Pattern Recogn. 1998, 31(3):315-325.
    • (1998) Pattern Recogn. , vol.31 , Issue.3 , pp. 315-325
    • Gupta, L.1    Sortrakul, T.2
  • 14
    • 33750381252 scopus 로고    scopus 로고
    • Image thresholding based on the em algorithm and the generalized gaussian distribution
    • Bazi Y., Bruzzone L., Melgani F. Image thresholding based on the em algorithm and the generalized gaussian distribution. Pattern Recogn. 2007, 40(2):619-634.
    • (2007) Pattern Recogn. , vol.40 , Issue.2 , pp. 619-634
    • Bazi, Y.1    Bruzzone, L.2    Melgani, F.3
  • 15
    • 55949113002 scopus 로고    scopus 로고
    • Image thresholding using a novel estimation method in generalized gaussian distribution mixture modeling
    • Fan S.-K.S., Lin Y., Wu C.-C. Image thresholding using a novel estimation method in generalized gaussian distribution mixture modeling. Neurocomputing 2008, 72(1-3):500-512.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 500-512
    • Fan, S.-K.S.1    Lin, Y.2    Wu, C.-C.3
  • 16
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histogram
    • Otsu N. A threshold selection method from gray-level histogram. IEEE Trans. Syst. Man Cybern. 1979, 9(1):62-66.
    • (1979) IEEE Trans. Syst. Man Cybern. , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 17
    • 33747881239 scopus 로고    scopus 로고
    • On minimum variance thresholding
    • Hou Z., Hu Q., Nowinski W. On minimum variance thresholding. Pattern Recogn. Lett. 2006, 27(14):1732-1743.
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.14 , pp. 1732-1743
    • Hou, Z.1    Hu, Q.2    Nowinski, W.3
  • 18
    • 0022266928 scopus 로고
    • A new method for graylevel picture thresholding using the entropy of the histogram
    • Kapur J., Sahoo P., Wong A. A new method for graylevel picture thresholding using the entropy of the histogram. Comput. Vis. Graph. Image Process. 1985, 34(11):273-285.
    • (1985) Comput. Vis. Graph. Image Process. , vol.34 , Issue.11 , pp. 273-285
    • Kapur, J.1    Sahoo, P.2    Wong, A.3
  • 21
    • 78649453053 scopus 로고    scopus 로고
    • Non-local spatial spectral clustering for image segmentation
    • Liu H., Jiao L., Zhao F. Non-local spatial spectral clustering for image segmentation. Neurocomputing 2010, 74(1-3):461-471.
    • (2010) Neurocomputing , vol.74 , Issue.1-3 , pp. 461-471
    • Liu, H.1    Jiao, L.2    Zhao, F.3
  • 22
    • 0024855650 scopus 로고
    • Automatic thresholding of gray-level pictures using two-dimensional entropy
    • Abutaleb A.S. Automatic thresholding of gray-level pictures using two-dimensional entropy. Graph. Image Process. 1989, 47(1):22-32.
    • (1989) Graph. Image Process. , vol.47 , Issue.1 , pp. 22-32
    • Abutaleb, A.S.1
  • 23
    • 0032017753 scopus 로고    scopus 로고
    • Fast recursive algorithms for two-dimensional thresholding
    • Gong J., Li L., Chen W. Fast recursive algorithms for two-dimensional thresholding. Pattern Recogn. 1998, 31(3):295-300.
    • (1998) Pattern Recogn. , vol.31 , Issue.3 , pp. 295-300
    • Gong, J.1    Li, L.2    Chen, W.3
  • 25
    • 2142643138 scopus 로고    scopus 로고
    • A thresholding method based on two-dimensional Renyi's entropy
    • Sahoo P.K., Arora G. A thresholding method based on two-dimensional Renyi's entropy. Pattern Recogn. 2004, 37(6):1149-1161.
    • (2004) Pattern Recogn. , vol.37 , Issue.6 , pp. 1149-1161
    • Sahoo, P.K.1    Arora, G.2
  • 26
    • 32844462173 scopus 로고    scopus 로고
    • Image thresholding using two-dimensional tsallis-havrda-charvàt entropy
    • Sahoo P.K., Arora G. Image thresholding using two-dimensional tsallis-havrda-charvàt entropy. Pattern Recogn. Lett. 2006, 27(6):520-528.
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.6 , pp. 520-528
    • Sahoo, P.K.1    Arora, G.2
  • 28
    • 79958806185 scopus 로고    scopus 로고
    • Image segmentation based on the integration of colour-texture descriptors-a review
    • Ilea D.E., Whelan P.F. Image segmentation based on the integration of colour-texture descriptors-a review. Pattern Recogn. 2011, 44(10-11):2479-2501.
    • (2011) Pattern Recogn. , vol.44 , Issue.10-11 , pp. 2479-2501
    • Ilea, D.E.1    Whelan, P.F.2
  • 29
    • 1442327717 scopus 로고    scopus 로고
    • Image segmentation based on 3-d maximum between-cluster variance
    • Jing X., Li J. Image segmentation based on 3-d maximum between-cluster variance. Acta Electron. Sin. 2003, 31(9):1281-1285.
    • (2003) Acta Electron. Sin. , vol.31 , Issue.9 , pp. 1281-1285
    • Jing, X.1    Li, J.2
  • 31
    • 77956059329 scopus 로고    scopus 로고
    • Fast three-dimensional otsu thresholding with shuffled frog-leaping algorithm
    • Wang N., Li X., hong Chen X. Fast three-dimensional otsu thresholding with shuffled frog-leaping algorithm. Pattern Recogn. Lett. 2010, 31(13):1809-1815.
    • (2010) Pattern Recogn. Lett. , vol.31 , Issue.13 , pp. 1809-1815
    • Wang, N.1    Li, X.2    hong Chen, X.3
  • 32
    • 77954884118 scopus 로고    scopus 로고
    • Optimal evolution algorithm for image thresholding
    • Lin Z., Wang Z., Zhang Y. Optimal evolution algorithm for image thresholding. J. Comput Aided Des. Comput. Graph. 2010, 22(7):1201-1207.
    • (2010) J. Comput Aided Des. Comput. Graph. , vol.22 , Issue.7 , pp. 1201-1207
    • Lin, Z.1    Wang, Z.2    Zhang, Y.3
  • 36
    • 84858080327 scopus 로고    scopus 로고
    • Image data field for homogeneous region based segmentation
    • Wu T., Qin K. Image data field for homogeneous region based segmentation. Comput. Electr. Eng. 2012, 38(2):459-470.
    • (2012) Comput. Electr. Eng. , vol.38 , Issue.2 , pp. 459-470
    • Wu, T.1    Qin, K.2
  • 37
    • 80655148915 scopus 로고    scopus 로고
    • Data field-based transition region extraction and thresholding
    • Wu T., Qin K. Data field-based transition region extraction and thresholding. Optics Lasers Eng. 2012, 50(2):131-139.
    • (2012) Optics Lasers Eng. , vol.50 , Issue.2 , pp. 131-139
    • Wu, T.1    Qin, K.2
  • 39
    • 0040355653 scopus 로고    scopus 로고
    • Adaptive document image binarization
    • Sauvola J., Pietikäinen M. Adaptive document image binarization. Pattern Recogn. 2000, 33(2):225-236.
    • (2000) Pattern Recogn. , vol.33 , Issue.2 , pp. 225-236
    • Sauvola, J.1    Pietikäinen, M.2
  • 40
    • 0032737679 scopus 로고    scopus 로고
    • A fast scheme for optimal thresholding using genetic algorithms
    • Yin P.-Y. A fast scheme for optimal thresholding using genetic algorithms. Signal Process. 1999, 72(2):85-95.
    • (1999) Signal Process. , vol.72 , Issue.2 , pp. 85-95
    • Yin, P.-Y.1
  • 41
    • 0032758880 scopus 로고    scopus 로고
    • A fast recurring two-dimensional entropic thresholding algorithm
    • Wu X., Zhang Y., Xia L. A fast recurring two-dimensional entropic thresholding algorithm. Pattern Recogn. 1999, 32(12):2055-2061.
    • (1999) Pattern Recogn. , vol.32 , Issue.12 , pp. 2055-2061
    • Wu, X.1    Zhang, Y.2    Xia, L.3
  • 42
    • 33745832284 scopus 로고    scopus 로고
    • Image segmentation by histogram thresholding using hierarchical cluster analysis
    • Arifina A.Z., Asano A. Image segmentation by histogram thresholding using hierarchical cluster analysis. Pattern Recogn. Lett. 2006, 27(13):1515-1521.
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.13 , pp. 1515-1521
    • Arifina, A.Z.1    Asano, A.2
  • 43
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: from error visibility to structural similarity
    • Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13(4):600-612.
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1    Bovik, A.C.2    Sheikh, H.R.3    Simoncelli, E.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.