-
1
-
-
35949019065
-
Two- Dimensional Magnetotransport in the Extreme Quantum Limit
-
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two- Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett. 48, 1982, 1559.
-
(1982)
Phys. Rev. Lett.
, vol.48
, pp. 1559
-
-
Tsui, D.C.1
Stormer, H.L.2
Gossard, A.C.3
-
2
-
-
33744712217
-
Ground-State Degeneracy of the Fractional Quantum Hall States in the Presence of a Random Potential and on High-Genus Riemann Surfaces
-
X.-G. Wen and Q. Niu, Ground-State Degeneracy of the Fractional Quantum Hall States in the Presence of a Random Potential and on High-Genus Riemann Surfaces, Phys. Rev. B 41, 1990, 9377.
-
(1990)
Phys. Rev. B
, vol.41
, pp. 9377
-
-
Wen, X.-G.1
Niu, Q.2
-
3
-
-
22244440948
-
Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations
-
R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Phys. Rev. Lett. 50, 1983, 1395.
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 1395
-
-
Laughlin, R.B.1
-
4
-
-
1842460762
-
Non-Abelions in the Fractional Quantum Hall Effect
-
G. Moore and N. Read, Non-Abelions in the Fractional Quantum Hall Effect, Nucl. Phys. B360, 1991, 362.
-
(1991)
Nucl. Phys.B
, vol.360
, pp. 362
-
-
Moore, G.1
Read, N.2
-
5
-
-
0000718818
-
Many-Body Systems with Non- Abelian Statistics
-
B. Blok and X.-G. Wen, Many-Body Systems with Non- Abelian Statistics, Nucl. Phys. B374, 1992, 615.
-
(1992)
Nucl. Phys. B
, vol.374
, pp. 615
-
-
Blok, B.1
Wen, X.-G.2
-
6
-
-
0037268624
-
Fault-Tolerant Quantum Computation by Anyons
-
A.Y. Kitaev, Fault-Tolerant Quantum Computation by Anyons, Ann. Phys. (N.Y.) 303, 2003, 2.
-
(2003)
Ann. Phys. (N.Y.)
, vol.303
, pp. 2
-
-
Kitaev, A.Y.1
-
7
-
-
18144395852
-
Topologically Protected Qubits from a Possible Non-Abelian Fractional Quantum Hall State
-
S. Das Sarma, M. Freedman, and C. Nayak, Topologically Protected Qubits from a Possible Non-Abelian Fractional Quantum Hall State, Phys. Rev. Lett. 94, 2005, 166802.
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 166802
-
-
Sarma, S.D.1
Freedman, M.2
Nayak, C.3
-
8
-
-
0030592675
-
2n-Quasihole States Realize 2n-1-Dimensional Spinor Braiding Statistics in Paired Quantum Hall States
-
C. Nayak and F. Wilczek, 2n-Quasihole States Realize 2n-1-Dimensional Spinor Braiding Statistics in Paired Quantum Hall States, Nucl. Phys. B479, 1996, 529.
-
(1996)
Nucl. Phys. B
, vol.479
, pp. 529
-
-
Nayak, C.1
Wilczek, F.2
-
9
-
-
0001083364
-
Fractional Statistics and the Quantum Hall Effect
-
D. Arovas J. R. Schrieffer, and F. Wilczek, Fractional Statistics and theQuantum Hall Effect, Phys. Rev. Lett. 53, 1984, 722.
-
(1984)
Phys. Rev. Lett.
, vol.53
, pp. 722
-
-
Arovas, D.1
Schrieffer, J.R.2
Wilczek, F.3
-
10
-
-
79961111766
-
Plasma Analogy and Non-Abelian Statistics for Ising-Type Quantum Hall States
-
P. Bonderson, V. Gurarie, and C. Nayak, Plasma Analogy and Non-Abelian Statistics for Ising-Type Quantum Hall States, Phys. Rev. B 83, 2011, 075303.
-
(2011)
Phys. Rev. B
, vol.83
, pp. 075303
-
-
Bonderson, P.1
Gurarie, V.2
Nayak, C.3
-
11
-
-
0031498067
-
A Plasma Analogy and Berry Matrices for Non-Abelian Quantum Hall States
-
V. Gurarie and C. Nayak, A Plasma Analogy and Berry Matrices for Non-Abelian Quantum Hall States, Nucl. Phys. B506, 1997, 685.
-
(1997)
Nucl. Phys. B
, vol.506
, pp. 685
-
-
Gurarie, V.1
Nayak, C.2
-
12
-
-
59249089187
-
Non-Abelian Adiabatic Statistics and Hall Viscosity in Quantum Hall States and pxipy Paired Superfluids
-
N. Read, Non-Abelian Adiabatic Statistics and Hall Viscosity in Quantum Hall States and pxipy Paired Superfluids, Phys. Rev. B 79, 2009, 045308.
-
(2009)
Phys. Rev. B
, vol.79
, pp. 045308
-
-
Read, N.1
-
13
-
-
84865141804
-
Quasiparticle Spin from Adiabatic Transport in Quantum Hall Trial Wavefunctions
-
N. Read, Quasiparticle Spin from Adiabatic Transport in Quantum Hall Trial Wavefunctions, arXiv:0807.3107.
-
arXiv:0807.3107.
-
-
Read, N.1
-
14
-
-
13144280693
-
Observation of an Even-Denominator Quantum Number in the Fractional Quantum Hall effect
-
R. Willett, J. P. Eisenstein, H. L. Stormer, D.C. Tsui, A. C. Gossard, and J. H. English, Observation of an Even-Denominator Quantum Number in the Fractional Quantum Hall effect, Phys. Rev. Lett. 59, 1987, 1776.
-
(1987)
Phys. Rev. Lett
, vol.59
, pp. 1776
-
-
Willett, R.1
Eisenstein, J.P.2
Stormer, H.L.3
Tsui, D.C.4
Gossard, A.C.5
English, J.H.6
-
15
-
-
0000049832
-
Paired States of Fermions in Two Dimensions with Breaking of Parity and Time-Reversal Symmetries and the Fractional Quantum Hall Effect
-
N. Read and D. Green, Paired States of Fermions in Two Dimensions with Breaking of Parity and Time-Reversal Symmetries and the Fractional Quantum Hall Effect, Phys. Rev. B 61, 2000, 10267.
-
(2000)
Phys. Rev. B
, vol.61
, pp. 10267
-
-
Read, N.1
Green, D.2
-
16
-
-
0035129985
-
Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors
-
D. A. Ivanov, Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors, Phys. Rev. Lett. 86, 2001, 268.
-
(2001)
Phys. Rev. Lett.
, vol.6
, pp. 268
-
-
Ivanov, D.A.1
-
17
-
-
42749105009
-
Geometric Phases and Quantum Entanglement as Building Blocks for Non- Abelian Quasiparticle Statistics
-
A. Stern, F. von Oppen, and E. Mariani, Geometric Phases and Quantum Entanglement as Building Blocks for Non- Abelian Quasiparticle Statistics, Phys. Rev. B 70, 2004, 205338.
-
(2004)
Phys. Rev. B
, vol.70
, pp. 205338
-
-
Stern, A.1
von Oppen, F.2
Mariani, E.3
-
18
-
-
33244480121
-
Fusion Rules and Vortices in pxipy Superconductors
-
M. Stone and S.-B. Chung, Fusion Rules and Vortices in pxipy Superconductors, Phys. Rev. B 73, 2006, 014505.
-
(2006)
Phys. Rev. B
, vol.73
, pp. 014505
-
-
Stone, M.1
Chung, S.-B.2
-
19
-
-
34247899169
-
Topological Degeneracy of Non-Abelian States for Dummies
-
M. Oshikawa, Y. B. Kim, K. Shtengel, C. Nayak, and S. Tewari, Topological Degeneracy of Non-Abelian States for Dummies, Ann. Phys. (N.Y.) 322, 2007, 1477.
-
(2007)
Ann. Phys. (N.Y.)
, vol.322
, pp. 1477
-
-
Oshikawa, M.1
Kim, Y.B.2
Shtengel, K.3
Nayak, C.4
Tewari, S.5
-
20
-
-
0000270607
-
Composite-Fermion Approach for the Fractional Quantum Hall Effect
-
J. K. Jain, Composite-Fermion Approach for the Fractional Quantum Hall Effect, Phys. Rev. Lett. 63, 1989, 199.
-
(1989)
Phys. Rev. Lett.
, vol.3
, pp. 199
-
-
Jain, J.K.1
-
21
-
-
33244468607
-
Incompressible Quantum Liquids and New Conservation Laws
-
A. Seidel, H. Fu, D.-H. Lee, J. M. Leinaas, and J. E. Moore, Incompressible Quantum Liquids and New Conservation Laws, Phys. Rev. Lett. 95, 2005, 266405.
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 266405
-
-
Seidel, A.1
Fu, H.2
Lee, D.-H.3
Leinaas, J.M.4
Moore, J.E.5
-
22
-
-
33746786819
-
Abelian and Non-Abelian Hall Liquids and Charge-Density Wave: Quantum Number Fractionalization in One and Two Dimensions
-
A. Seidel and D.-H. Lee, Abelian and Non-Abelian Hall Liquids and Charge-Density Wave: Quantum Number Fractionalization in One and Two Dimensions, Phys. Rev. Lett. 97, 2006, 56804.
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 56804
-
-
Seidel, A.1
Lee, D.-H.2
-
23
-
-
34848846836
-
Domain-Wall-Type Defects as Anyons in Phase Space
-
A. Seidel and D.-H. Lee, Domain-Wall-Type Defects as Anyons in Phase Space, Phys. Rev. B 76, 2007, 155101.
-
(2007)
Phys. Rev. B
, vol.76
, pp. 155101
-
-
Seidel, A.1
Lee, D.-H.2
-
24
-
-
47749125421
-
Halperin m;m0; n Bilayer Quantum Hall States on Thin Cylinders
-
A. Seidel and K. Yang, Halperin m;m0; n Bilayer Quantum Hall States on Thin Cylinders, Phys. Rev. Lett. 101, 2008, 036804.
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 036804
-
-
Seidel, A.1
Yang, K.2
-
25
-
-
55849118789
-
Pfaffian Statistics Through Adiabatic Transport in the 1D Coherent State Representation
-
A. Seidel, Pfaffian Statistics Through Adiabatic Transport in the 1D Coherent State Representation, Phys. Rev. Lett. 101, 2008, 196802.
-
(2008)
Phys. Rev. Lett.
, vol.1
, pp. 196802
-
-
Seidel, A.1
-
26
-
-
77954396368
-
S-Duality Constraints on 1D Patterns Associated with Fractional Quantum Hall States
-
A. Seidel, S-Duality Constraints on 1D Patterns Associated with Fractional Quantum Hall States, Phys. Rev. Lett. 105, 2010, 026802.
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 026802
-
-
Seidel, A.1
-
27
-
-
80052427081
-
Gapless Excitations in the Haldane-Rezayi State: The Thin-Torus Limit
-
A. Seidel and K. Yang, Gapless Excitations in the Haldane-Rezayi State: The Thin-Torus Limit, Phys. Rev. B 84, 2011, 085122.
-
(2011)
Phys. Rev. B
, vol.84
, pp. 085122
-
-
Seidel, A.1
Yang, K.2
-
28
-
-
18244370264
-
Half-Filled Lowest Landau Level on a Thin Torus
-
E. J. Bergholtz and A. Karlhede, Half-Filled Lowest Landau Level on a Thin Torus, Phys. Rev. Lett. 94, 2005, 26802.
-
(2005)
Phys. Rev. Lett.
, vol.4
, pp. 26802
-
-
Bergholtz, E.J.1
Karlhede, A.2
-
29
-
-
42749106878
-
One-Dimensional' Theory of the Quantum Hall System
-
E. J. Bergholtz and A. Karlhede, 'One-Dimensional' Theory of the Quantum Hall System, J. Stat. Mech. (2006) L04001.
-
(2006)
J. Stat. Mech.
-
-
Bergholtz, E.J.1
Karlhede, A.2
-
30
-
-
33748130481
-
Pfaffian Quantum Hall State Made Simple: Multiple Vacua and Domain Walls on a Thin Torus
-
E. J. Bergholtz, J. Kailasvuori, E. Wikberg, T. H. Hansson, and A. Karlhede, Pfaffian Quantum Hall State Made Simple: Multiple Vacua and Domain Walls on a Thin Torus, Phys. Rev. B 74, 2006, 081308.
-
(2006)
Phys. Rev. B
, vol.74
, pp. 081308
-
-
Bergholtz, E.J.1
Kailasvuori, J.2
Wikberg, E.3
Hansson, T.H.4
Karlhede, A.5
-
31
-
-
37249034174
-
Microscopic Theory of the Quantum Hall Hierarchy
-
E. J. Bergholtz, T. H. Hansson, M. Hermanns, and A. Karlhede, Microscopic Theory of the Quantum Hall Hierarchy, Phys. Rev. Lett. 99, 2007, 256803.
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 256803
-
-
Bergholtz, E.J.1
Hansson, T.H.2
Hermanns, M.3
Karlhede, A.4
-
32
-
-
42049094261
-
Quantum Hall System in Tao-Thouless Limit
-
E. J. Bergholtz and A. Karlhede, Quantum Hall System in Tao-Thouless Limit, Phys. Rev. B 77, 2008, 155308.
-
(2008)
Phys. Rev. B
, vol.77
, pp. 155308
-
-
Bergholtz, E.J.1
Karlhede, A.2
-
34
-
-
0000795378
-
Finite-Size Studies of the Incompressible State of the Fractionally Quantized Hall Effect and its Excitations
-
F. D. M. Haldane and E. H. Rezayi, Finite-Size Studies of the Incompressible State of the Fractionally Quantized Hall Effect and its Excitations, Phys. Rev. Lett. 54, 1985, 237.
-
(1985)
Phys. Rev. Lett
, vol.54
, pp. 237
-
-
Haldane M, F.D.1
Rezayi, E.H.2
-
35
-
-
45749093381
-
Model Fractional Quantum Hall States and Jack Polynomials
-
B. A. Bernevig and F. D. M. Haldane, Model Fractional Quantum Hall States and Jack Polynomials, Phys. Rev. Lett. 100, 2008, 246802.
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 246802
-
-
Bernevig, B.A.1
Haldane, F.D.M.2
-
36
-
-
43449113560
-
Generalized Clustering Conditions of Jack Polynomials at Negative Jack Parameter
-
B. A. Bernevig and F. D. M. Haldane, Generalized Clustering Conditions of Jack Polynomials at Negative Jack Parameter, Phys. Rev. B 77, 2008, 184502.
-
(2008)
Phys. Rev. B
, vol.77
, pp. 184502
-
-
Bernevig, B.A.1
Haldane, F.D.M.2
-
37
-
-
57749089579
-
Properties of Non- Abelian Fractional Quantum Hall States at Filling
-
B. A. Bernevig and F. D. M. Haldane, Properties of Non- Abelian Fractional Quantum Hall States at Filling k=r, Phys. Rev. Lett. 101, 2008, 246806.
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 246806
-
-
Bernevig, B.A.1
Haldane, F.D.M.2
-
38
-
-
45249113015
-
Classication of Symmetric Polynomials of Infinite Variables: Construction of Abelian and Non-Abelian Quantum Hall States
-
X.-G. Wen and Z. Wang, Classication of Symmetric Polynomials of Infinite Variables: Construction of Abelian and Non-Abelian Quantum Hall States, Phys. Rev. B 77, 2008, 235108.
-
(2008)
Phys. Rev. B
, vol.77
, pp. 235108
-
-
Wen, X.-G.1
Wang, Z.2
-
39
-
-
54449084094
-
Topological properties of Abelian and non-Abelian Quantum Hall States from the Pattern of Zeros
-
X.-G. Wen and Z. Wang, Topological properties of Abelian and non-Abelian Quantum Hall States from the Pattern of Zeros, Phys. Rev. B 78, 2008, 155109.
-
(2008)
Phys. Rev. B
, vol.78
, pp. 155109
-
-
Wen, X.-G.1
Wang, Z.2
-
40
-
-
78650822312
-
Non-Abelian Two- Component Fractional Quantum Hall States
-
M. Barkeshli and X.-G. Wen, Non-Abelian Two- Component Fractional Quantum Hall States, Phys. Rev. B 82, 2010, 233301.
-
(2010)
Phys. Rev. B
, vol.82
, pp. 233301
-
-
Barkeshli, M.1
Wen, X.-G.2
-
41
-
-
78650814192
-
Classification of Abelian and non-Abelian Multilayer Fractional Quantum Hall States through the Pattern of Zeros
-
M. Barkeshli and X.-G. Wen, Classification of Abelian and non-Abelian Multilayer Fractional Quantum Hall States through the Pattern of Zeros, Phys. Rev. B 82, 2010, 245301.
-
(2010)
Phys. Rev. B
, vol.82
, pp. 245301
-
-
Barkeshli, M.1
Wen, X.-G.2
-
42
-
-
60849093559
-
Non-Abelian Anyons and Interferometry
-
Ph.D. thesis, California Institute of Technology,
-
P. Bonderson, Non-Abelian Anyons and Interferometry, Ph.D. thesis, California Institute of Technology, 2007
-
(2007)
-
-
Bonderson, P.1
-
43
-
-
30444456387
-
Anyons in an Exactly Solved Model and Beyond
-
A.Y. Kitaev, Anyons in an Exactly Solved Model and Beyond, Ann. Phys. (N.Y.) 321, 2006, 2.
-
(2006)
Ann. Phys. (N.Y.)
, vol.21
, pp. 2
-
-
Kitaev, A.Y.1
-
44
-
-
0010798477
-
Polynomial Equations for Rational Conformal Field Theories
-
G. Moore and N. Seiberg, Polynomial Equations for Rational Conformal Field Theories, Phys. Lett. B 212, 1988, 451.
-
(1988)
Phys. Lett. B
, vol.212
, pp. 451
-
-
Moore, G.1
Seiberg, N.2
-
45
-
-
43049111416
-
Degeneracy of Non-Abelian Quantum Hall States on the Torus: Domain Walls and Conformal Field Theory
-
E. Ardonne, E. J. Bergholtz, J. Kailasvuori, and E. Wikberg, Degeneracy of Non-Abelian Quantum Hall States on the Torus: Domain Walls and Conformal Field Theory, J. Stat. Mech. (2008) P04016.
-
(2008)
J. Stat. Mech.
-
-
Ardonne, E.1
Bergholtz, E.J.2
Kailasvuori, J.3
Wikberg, E.4
-
46
-
-
67650283834
-
Domain Walls, Fusion Rules, and Conformal Field Theory in the Quantum Hall Regime
-
E. Ardonne, Domain Walls, Fusion Rules, and Conformal Field Theory in the Quantum Hall Regime, Phys. Rev. Lett. 102, 2009, 180401.
-
(2009)
Phys. Rev. Lett
, vol.102
, pp. 180401
-
-
Ardonne, E.1
-
47
-
-
0000011912
-
Beyond Paired Quantum Hall States: Parafermions and Incompressible States in the First Excited Landau Level
-
N. Read and E. H. Rezayi, Beyond Paired Quantum Hall States: Parafermions and Incompressible States in the First Excited Landau Level, Phys. Rev. B 59, 1999, 8084.
-
(1999)
Phys. Rev. B
, vol.59
, pp. 8084
-
-
Read, N.1
Rezayi, E.H.2
-
48
-
-
77955008761
-
Non- Abelian Quantum Hall States and their Quasiparticles: From the Pattern of Zeros to Vertex Algebra
-
Y.-M. Lu, X.-G. Wen, Z. Wang, and Z. Wang, Non- Abelian Quantum Hall States and their Quasiparticles: From the Pattern of Zeros to Vertex Algebra, Phys. Rev. B 81, 2010, 115124.
-
(2010)
Phys. Rev. B
, vol.81
, pp. 115124
-
-
Lu, Y.-M.1
Wen, X.-G.2
Wang, Z.3
Wang, Z.4
-
49
-
-
4243683825
-
Many-Particle Translational Symmetries of Two-Dimensional Electrons at Rational Landau-Level Filling
-
F. D. M. Haldane, Many-Particle Translational Symmetries of Two-Dimensional Electrons at Rational Landau-Level Filling, Phys. Rev. Lett. 55, 1985, 2095.
-
(1985)
Phys. Rev. Lett.
, vol.5
, pp. 2095
-
-
Haldane M, F.D.1
-
50
-
-
0005303483
-
Laughlin State on Stretched and Squeezed Cylinders and Edge Excitations in the Quantum Hall Effect
-
E. H. Rezayi and F. D. M. Haldane, Laughlin State on Stretched and Squeezed Cylinders and Edge Excitations in the Quantum Hall Effect, Phys. Rev. B 50, 1994, 17199.
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17199
-
-
Rezayi, E.H.1
Haldane, F.D.M.2
-
51
-
-
0000434548
-
Quasiholes and Fermionic Zero Modes of Paired Fractional Quantum Hall States: The Mechanism for Non-Abelian Statistics
-
N. Read and E. H. Rezayi, Quasiholes and Fermionic Zero Modes of Paired Fractional Quantum Hall States: The Mechanism for Non-Abelian Statistics, Phys. Rev. B 54, 1996, 16864.
-
(1996)
Phys. Rev. B
, vol.54
, pp. 16864
-
-
Read, N.1
Rezayi, E.H.2
-
52
-
-
33744723980
-
Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States
-
F. D. M. Haldane, Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States, Phys. Rev. Lett. 51, 1983, 605.
-
(1983)
Phys. Rev. Lett.
, vol.1
, pp. 605
-
-
Haldane M, F.D.1
-
53
-
-
0001416376
-
Fractional Statistics on a Torus
-
T. Einarsson Fractional Statistics on a Torus, Phys. Rev. Lett. 64, 1990, 1995.
-
(1990)
Phys. Rev. Lett.
, vol.64
, pp. 995
-
-
Einarsson, T.1
-
54
-
-
0000021995
-
Exact Results for the Fractional Quantum Hall Effect with General Interactions
-
S. A. Trugman and S. Kivelson, Exact Results for the Fractional Quantum Hall Effect with General Interactions, Phys. Rev. B 31, 1985, 5280.
-
(1985)
Phys. Rev. B
, vol.1
, pp. 5280
-
-
Trugman, S.A.1
Kivelson, S.2
-
55
-
-
0001006643
-
Fractional Quantization of Hall Conductance
-
R. Tao and D. J. Thouless, Fractional Quantization of Hall Conductance, Phys. Rev. B 28, 1983, 1142.
-
(1983)
Phys. Rev. B
, vol.28
, pp. 1142
-
-
Tao, R.1
Thouless, D.J.2
-
56
-
-
56349102139
-
Symmetry Breaking in Laughlin's State on a Cylinder
-
S. Jansen, E. H. Lieb, and R. Seiler, Symmetry Breaking in Laughlin's State on a Cylinder, Commun. Math. Phys. 285, 2008, 503.
-
(2008)
Commun. Math. Phys.
, vol.285
, pp. 503
-
-
Jansen, S.1
Lieb, E.H.2
Seiler, R.3
-
57
-
-
25044457789
-
Soliton Excitations in Polyacetylene
-
W. P. Su, J. R. Schrieffer, and A. J. Heeger, Soliton Excitations in Polyacetylene, Phys. Rev. B 22, 1980, 2099.
-
(1980)
Phys. Rev. B
, vol.22
, pp. 2099
-
-
Su, W.P.1
Schrieffer, J.R.2
Heeger, A.J.3
-
58
-
-
84865121515
-
-
The other sector can be reached by multiplication with i i.
-
The other sector can be reached by multiplication with i i.
-
-
-
-
59
-
-
84865141718
-
-
An hy-dependent phase has been dropped for simplicity. As a result, note that the original Laughlin state Eq. (24) is single valued in hy, whereas Eq. (25) is not.
-
An hy-dependent phase has been dropped for simplicity. As a result, note that the original Laughlin state Eq. (24) is single valued in hy, whereas Eq. (25) is not.
-
-
-
-
60
-
-
0002207807
-
Quantal Phase Factors Accompanying Adiabatic Changes
-
M.V. Berry, Quantal Phase Factors Accompanying Adiabatic Changes, Proc. R. Soc. A 392, 1984, 45.
-
(1984)
Proc. R. Soc. A
, vol.92
, pp. 45
-
-
Berry, M.V.1
-
61
-
-
0001345770
-
Holonomy
-
B. Simon, Holonomy, the Quantum Adiabatic Theorem, and Berry's Phase, Phys. Rev. Lett. 51, 1983, 2167.
-
(1983)
the Quantum Adiabatic Theorem, and Berry's Phase, Phys. Rev. Lett.
, vol.1
, pp. 2167
-
-
Simon, B.1
-
62
-
-
0001504431
-
Appearance of Gauge Structure in Simple Dynamical Systems
-
F. Wilczek and A. Zee, Appearance of Gauge Structure in Simple Dynamical Systems, Phys. Rev. Lett. 52, 1984, 2111.
-
(1984)
Phys. Rev. Lett.
, vol.52
, pp. 2111
-
-
Wilczek, F.1
Zee, A.2
-
63
-
-
84865143305
-
-
Some care must be given to fermion negative signs at odd denominator filling factors, in equations such as (39), (40), and (17). See Ref. [23].
-
Some care must be given to fermion negative signs at odd denominator filling factors, in equations such as (39), (40), and (17). See Ref. [23].
-
-
-
-
64
-
-
2842579486
-
Paired Hall States
-
M. Greiter, X.-G.Wen, and F.Wilczek, Paired Hall States, Nucl. Phys. B374, 1992, 567.
-
(1992)
Nucl. Phys.B
, vol.374
, pp. 567
-
-
Greiter, M.1
Wen, X.-G.2
Wilczek, F.3
-
65
-
-
84865141805
-
-
Note that a coordinate shift in particular, changes both the magnetic vector potential and thequasiperiodic boundary condition in x on wave functions. The constant in A 0 determines the locations of the LLL orbitals 'n. An additional phase twist in the magnetic boundary condition in x does the same for the orbitals 'n. In this sense, fixing and the magnetic boundary conditions leads to a preferred set of coordinate systems on the torus, which, up to scaling (!), is symmetric with respect to the LLL basesn and n. Here, the index n is always defined via properties under magnetic translations, Eq. (6).
-
Note that a coordinate shift in particular, changes both the magnetic vector potential and thequasiperiodic boundary condition in x on wave functions. The constant in A 0 determines the locations of the LLL orbitals 'n. An additional phase twist in the magnetic boundary condition in x does the same for the orbitals 'n. In this sense, fixing and the magnetic boundary conditions leads to a preferred set of coordinate systems on the torus, which, up to scaling (!), is symmetric with respect to the LLL basesn and n. Here, the index n is always defined via properties under magnetic translations, Eq. (6).
-
-
-
-
66
-
-
84865141717
-
-
One may consider a generalized version of the coherent state (66), with replaced by1 in the first factor, and by2 in the second. Consistent behavior of this expression under requires12 mod= . Consistent behavior under I requires12 mod= . This indicates that either1;2 0 mod=
-
One may consider a generalized version of the coherent state (66), with replaced by1 in the first factor, and by2 in the second. Consistent behavior of this expression under requires12 mod= . Consistent behavior under I requires12 mod= . This indicates that either1;2 0 mod=
-
-
-
-
67
-
-
84865141808
-
-
or1;2=2mod=2 . We can then take12 without loss of generality, since shiftingi by=
-
or1;2=2mod=2 . We can then take12 without loss of generality, since shiftingi by=
-
-
-
-
68
-
-
84865141807
-
-
only results in an overall change of phase; cf. Sec. III B, where furthermore
-
only results in an overall change of phase; cf. Sec. III B, where furthermore
-
-
-
-
69
-
-
84865141719
-
-
1=2 is derived.
-
1=2 is derived.
-
-
-
-
70
-
-
84865121514
-
-
Here, an additional phase factor eithat was present in Eq. (79), which would arise in the off-diagonal matrix element with the conventions of the preceding sections, has been absorbed into a sign convention for the adiabatically continued domain-wall state basis.
-
Here, an additional phase factor eithat was present in Eq. (79), which would arise in the off-diagonal matrix element with the conventions of the preceding sections, has been absorbed into a sign convention for the adiabatically continued domain-wall state basis.
-
-
-
-
71
-
-
84865143308
-
-
Other choices for the configurations of the quasiholes will result in the same braiding matrices, as it should be.
-
Other choices for the configurations of the quasiholes will result in the same braiding matrices, as it should be.
-
-
-
-
72
-
-
84865121517
-
-
We leave it understood that this relation holds modulo 2.
-
We leave it understood that this relation holds modulo 2.
-
-
-
-
73
-
-
0035486388
-
Quantum Groups and Non-Abelian Braiding in Quantum Hall Systems
-
J. K. Slingerland and F. A. Bais, Quantum Groups and Non-Abelian Braiding in Quantum Hall Systems, Nucl. Phys. B612, 2001, 229.
-
(2001)
Nucl. Phys. B
, vol.612
, pp. 229
-
-
Slingerl, J.K.1
Bais, F.A.2
-
74
-
-
84865121516
-
-
Lecture Notes for Physics 219: Quantum Computation , x.
-
J. Preskill Lecture Notes for Physics 219: Quantum Computation (2004),http://www.theory.caltech.edu/ ~preskill/ph219/topological.pdf.
-
(2004)
-
-
Preskill, J.1
-
75
-
-
84865143311
-
-
Private communication)
-
P. Bonderson (private communication).
-
-
-
Bonderson, P.1
-
76
-
-
33846954341
-
Construction of a Paired Wave Function for Spinless Electrons at Filling Fraction 2=5
-
S. H. Simon, E. H. Rezayi, N. R. Cooper, and I. Berdnikov, Construction of a Paired Wave Function for Spinless Electrons at Filling Fraction 2=5, Phys. Rev. B 75, 2007, 75317.
-
(2007)
Phys. Rev. B
, vol.75
, pp. 75317
-
-
Simon, S.H.1
Rezayi, E.H.2
Cooper, N.R.3
Berdnikov, I.4
-
77
-
-
84865143309
-
-
In this case, Eqs. (B5d) and (B8b) imply 3 p , and 44j from Eq. (B5e). From Eq. (B12), we must then have 1 1 0, hence, 2p3. The absolute values in Eq. (B14) therefore work out, and Eq. (B14) must thus hold for some phase2, which is then defined through this equation.
-
In this case, Eqs. (B5d) and (B8b) imply 3 p , and 44j from Eq. (B5e). From Eq. (B12), we must then have 1 1 0, hence, 2p3. The absolute values in Eq. (B14) therefore work out, and Eq. (B14) must thus hold for some phase2, which is then defined through this equation.
-
-
-
|