메뉴 건너뛰기




Volumn 1, Issue 2, 2011, Pages 1-37

Abelian and Non-Abelian Statistics in the Coherent State Representation

Author keywords

Condensed Matter Physics; Mesoscopics; Strongly Correlated Materials

Indexed keywords

ADIABATIC TRANSPORT; COHERENT STATE; COHERENT-STATE REPRESENTATIONS; CONFORMAL BLOCKS; FILLING FACTOR; FRACTIONAL QUANTUM HALL STATE; MESOSCOPICS; NON-ABELIAN STATISTICS; QUANTUM HALL STATE; QUASIPARTICLES; SELF-CONSISTENT DERIVATION; STRONGLY CORRELATED MATERIALS;

EID: 84865131040     PISSN: None     EISSN: 21603308     Source Type: Journal    
DOI: 10.1103/PhysRevX.1.021015     Document Type: Article
Times cited : (27)

References (77)
  • 1
    • 35949019065 scopus 로고
    • Two- Dimensional Magnetotransport in the Extreme Quantum Limit
    • D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two- Dimensional Magnetotransport in the Extreme Quantum Limit, Phys. Rev. Lett. 48, 1982, 1559.
    • (1982) Phys. Rev. Lett. , vol.48 , pp. 1559
    • Tsui, D.C.1    Stormer, H.L.2    Gossard, A.C.3
  • 2
    • 33744712217 scopus 로고
    • Ground-State Degeneracy of the Fractional Quantum Hall States in the Presence of a Random Potential and on High-Genus Riemann Surfaces
    • X.-G. Wen and Q. Niu, Ground-State Degeneracy of the Fractional Quantum Hall States in the Presence of a Random Potential and on High-Genus Riemann Surfaces, Phys. Rev. B 41, 1990, 9377.
    • (1990) Phys. Rev. B , vol.41 , pp. 9377
    • Wen, X.-G.1    Niu, Q.2
  • 3
    • 22244440948 scopus 로고
    • Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations
    • R. B. Laughlin, Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations, Phys. Rev. Lett. 50, 1983, 1395.
    • (1983) Phys. Rev. Lett. , vol.50 , pp. 1395
    • Laughlin, R.B.1
  • 4
    • 1842460762 scopus 로고
    • Non-Abelions in the Fractional Quantum Hall Effect
    • G. Moore and N. Read, Non-Abelions in the Fractional Quantum Hall Effect, Nucl. Phys. B360, 1991, 362.
    • (1991) Nucl. Phys.B , vol.360 , pp. 362
    • Moore, G.1    Read, N.2
  • 5
    • 0000718818 scopus 로고
    • Many-Body Systems with Non- Abelian Statistics
    • B. Blok and X.-G. Wen, Many-Body Systems with Non- Abelian Statistics, Nucl. Phys. B374, 1992, 615.
    • (1992) Nucl. Phys. B , vol.374 , pp. 615
    • Blok, B.1    Wen, X.-G.2
  • 6
    • 0037268624 scopus 로고    scopus 로고
    • Fault-Tolerant Quantum Computation by Anyons
    • A.Y. Kitaev, Fault-Tolerant Quantum Computation by Anyons, Ann. Phys. (N.Y.) 303, 2003, 2.
    • (2003) Ann. Phys. (N.Y.) , vol.303 , pp. 2
    • Kitaev, A.Y.1
  • 7
    • 18144395852 scopus 로고    scopus 로고
    • Topologically Protected Qubits from a Possible Non-Abelian Fractional Quantum Hall State
    • S. Das Sarma, M. Freedman, and C. Nayak, Topologically Protected Qubits from a Possible Non-Abelian Fractional Quantum Hall State, Phys. Rev. Lett. 94, 2005, 166802.
    • (2005) Phys. Rev. Lett. , vol.94 , pp. 166802
    • Sarma, S.D.1    Freedman, M.2    Nayak, C.3
  • 8
    • 0030592675 scopus 로고    scopus 로고
    • 2n-Quasihole States Realize 2n-1-Dimensional Spinor Braiding Statistics in Paired Quantum Hall States
    • C. Nayak and F. Wilczek, 2n-Quasihole States Realize 2n-1-Dimensional Spinor Braiding Statistics in Paired Quantum Hall States, Nucl. Phys. B479, 1996, 529.
    • (1996) Nucl. Phys. B , vol.479 , pp. 529
    • Nayak, C.1    Wilczek, F.2
  • 9
  • 10
    • 79961111766 scopus 로고    scopus 로고
    • Plasma Analogy and Non-Abelian Statistics for Ising-Type Quantum Hall States
    • P. Bonderson, V. Gurarie, and C. Nayak, Plasma Analogy and Non-Abelian Statistics for Ising-Type Quantum Hall States, Phys. Rev. B 83, 2011, 075303.
    • (2011) Phys. Rev. B , vol.83 , pp. 075303
    • Bonderson, P.1    Gurarie, V.2    Nayak, C.3
  • 11
    • 0031498067 scopus 로고    scopus 로고
    • A Plasma Analogy and Berry Matrices for Non-Abelian Quantum Hall States
    • V. Gurarie and C. Nayak, A Plasma Analogy and Berry Matrices for Non-Abelian Quantum Hall States, Nucl. Phys. B506, 1997, 685.
    • (1997) Nucl. Phys. B , vol.506 , pp. 685
    • Gurarie, V.1    Nayak, C.2
  • 12
    • 59249089187 scopus 로고    scopus 로고
    • Non-Abelian Adiabatic Statistics and Hall Viscosity in Quantum Hall States and pxipy Paired Superfluids
    • N. Read, Non-Abelian Adiabatic Statistics and Hall Viscosity in Quantum Hall States and pxipy Paired Superfluids, Phys. Rev. B 79, 2009, 045308.
    • (2009) Phys. Rev. B , vol.79 , pp. 045308
    • Read, N.1
  • 13
    • 84865141804 scopus 로고    scopus 로고
    • Quasiparticle Spin from Adiabatic Transport in Quantum Hall Trial Wavefunctions
    • N. Read, Quasiparticle Spin from Adiabatic Transport in Quantum Hall Trial Wavefunctions, arXiv:0807.3107.
    • arXiv:0807.3107.
    • Read, N.1
  • 15
    • 0000049832 scopus 로고    scopus 로고
    • Paired States of Fermions in Two Dimensions with Breaking of Parity and Time-Reversal Symmetries and the Fractional Quantum Hall Effect
    • N. Read and D. Green, Paired States of Fermions in Two Dimensions with Breaking of Parity and Time-Reversal Symmetries and the Fractional Quantum Hall Effect, Phys. Rev. B 61, 2000, 10267.
    • (2000) Phys. Rev. B , vol.61 , pp. 10267
    • Read, N.1    Green, D.2
  • 16
    • 0035129985 scopus 로고    scopus 로고
    • Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors
    • D. A. Ivanov, Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors, Phys. Rev. Lett. 86, 2001, 268.
    • (2001) Phys. Rev. Lett. , vol.6 , pp. 268
    • Ivanov, D.A.1
  • 17
    • 42749105009 scopus 로고    scopus 로고
    • Geometric Phases and Quantum Entanglement as Building Blocks for Non- Abelian Quasiparticle Statistics
    • A. Stern, F. von Oppen, and E. Mariani, Geometric Phases and Quantum Entanglement as Building Blocks for Non- Abelian Quasiparticle Statistics, Phys. Rev. B 70, 2004, 205338.
    • (2004) Phys. Rev. B , vol.70 , pp. 205338
    • Stern, A.1    von Oppen, F.2    Mariani, E.3
  • 18
    • 33244480121 scopus 로고    scopus 로고
    • Fusion Rules and Vortices in pxipy Superconductors
    • M. Stone and S.-B. Chung, Fusion Rules and Vortices in pxipy Superconductors, Phys. Rev. B 73, 2006, 014505.
    • (2006) Phys. Rev. B , vol.73 , pp. 014505
    • Stone, M.1    Chung, S.-B.2
  • 20
    • 0000270607 scopus 로고
    • Composite-Fermion Approach for the Fractional Quantum Hall Effect
    • J. K. Jain, Composite-Fermion Approach for the Fractional Quantum Hall Effect, Phys. Rev. Lett. 63, 1989, 199.
    • (1989) Phys. Rev. Lett. , vol.3 , pp. 199
    • Jain, J.K.1
  • 22
    • 33746786819 scopus 로고    scopus 로고
    • Abelian and Non-Abelian Hall Liquids and Charge-Density Wave: Quantum Number Fractionalization in One and Two Dimensions
    • A. Seidel and D.-H. Lee, Abelian and Non-Abelian Hall Liquids and Charge-Density Wave: Quantum Number Fractionalization in One and Two Dimensions, Phys. Rev. Lett. 97, 2006, 56804.
    • (2006) Phys. Rev. Lett. , vol.97 , pp. 56804
    • Seidel, A.1    Lee, D.-H.2
  • 23
    • 34848846836 scopus 로고    scopus 로고
    • Domain-Wall-Type Defects as Anyons in Phase Space
    • A. Seidel and D.-H. Lee, Domain-Wall-Type Defects as Anyons in Phase Space, Phys. Rev. B 76, 2007, 155101.
    • (2007) Phys. Rev. B , vol.76 , pp. 155101
    • Seidel, A.1    Lee, D.-H.2
  • 24
    • 47749125421 scopus 로고    scopus 로고
    • Halperin m;m0; n Bilayer Quantum Hall States on Thin Cylinders
    • A. Seidel and K. Yang, Halperin m;m0; n Bilayer Quantum Hall States on Thin Cylinders, Phys. Rev. Lett. 101, 2008, 036804.
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 036804
    • Seidel, A.1    Yang, K.2
  • 25
    • 55849118789 scopus 로고    scopus 로고
    • Pfaffian Statistics Through Adiabatic Transport in the 1D Coherent State Representation
    • A. Seidel, Pfaffian Statistics Through Adiabatic Transport in the 1D Coherent State Representation, Phys. Rev. Lett. 101, 2008, 196802.
    • (2008) Phys. Rev. Lett. , vol.1 , pp. 196802
    • Seidel, A.1
  • 26
    • 77954396368 scopus 로고    scopus 로고
    • S-Duality Constraints on 1D Patterns Associated with Fractional Quantum Hall States
    • A. Seidel, S-Duality Constraints on 1D Patterns Associated with Fractional Quantum Hall States, Phys. Rev. Lett. 105, 2010, 026802.
    • (2010) Phys. Rev. Lett. , vol.105 , pp. 026802
    • Seidel, A.1
  • 27
    • 80052427081 scopus 로고    scopus 로고
    • Gapless Excitations in the Haldane-Rezayi State: The Thin-Torus Limit
    • A. Seidel and K. Yang, Gapless Excitations in the Haldane-Rezayi State: The Thin-Torus Limit, Phys. Rev. B 84, 2011, 085122.
    • (2011) Phys. Rev. B , vol.84 , pp. 085122
    • Seidel, A.1    Yang, K.2
  • 28
    • 18244370264 scopus 로고    scopus 로고
    • Half-Filled Lowest Landau Level on a Thin Torus
    • E. J. Bergholtz and A. Karlhede, Half-Filled Lowest Landau Level on a Thin Torus, Phys. Rev. Lett. 94, 2005, 26802.
    • (2005) Phys. Rev. Lett. , vol.4 , pp. 26802
    • Bergholtz, E.J.1    Karlhede, A.2
  • 29
    • 42749106878 scopus 로고    scopus 로고
    • One-Dimensional' Theory of the Quantum Hall System
    • E. J. Bergholtz and A. Karlhede, 'One-Dimensional' Theory of the Quantum Hall System, J. Stat. Mech. (2006) L04001.
    • (2006) J. Stat. Mech.
    • Bergholtz, E.J.1    Karlhede, A.2
  • 30
    • 33748130481 scopus 로고    scopus 로고
    • Pfaffian Quantum Hall State Made Simple: Multiple Vacua and Domain Walls on a Thin Torus
    • E. J. Bergholtz, J. Kailasvuori, E. Wikberg, T. H. Hansson, and A. Karlhede, Pfaffian Quantum Hall State Made Simple: Multiple Vacua and Domain Walls on a Thin Torus, Phys. Rev. B 74, 2006, 081308.
    • (2006) Phys. Rev. B , vol.74 , pp. 081308
    • Bergholtz, E.J.1    Kailasvuori, J.2    Wikberg, E.3    Hansson, T.H.4    Karlhede, A.5
  • 32
    • 42049094261 scopus 로고    scopus 로고
    • Quantum Hall System in Tao-Thouless Limit
    • E. J. Bergholtz and A. Karlhede, Quantum Hall System in Tao-Thouless Limit, Phys. Rev. B 77, 2008, 155308.
    • (2008) Phys. Rev. B , vol.77 , pp. 155308
    • Bergholtz, E.J.1    Karlhede, A.2
  • 34
    • 0000795378 scopus 로고
    • Finite-Size Studies of the Incompressible State of the Fractionally Quantized Hall Effect and its Excitations
    • F. D. M. Haldane and E. H. Rezayi, Finite-Size Studies of the Incompressible State of the Fractionally Quantized Hall Effect and its Excitations, Phys. Rev. Lett. 54, 1985, 237.
    • (1985) Phys. Rev. Lett , vol.54 , pp. 237
    • Haldane M, F.D.1    Rezayi, E.H.2
  • 35
    • 45749093381 scopus 로고    scopus 로고
    • Model Fractional Quantum Hall States and Jack Polynomials
    • B. A. Bernevig and F. D. M. Haldane, Model Fractional Quantum Hall States and Jack Polynomials, Phys. Rev. Lett. 100, 2008, 246802.
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 246802
    • Bernevig, B.A.1    Haldane, F.D.M.2
  • 36
    • 43449113560 scopus 로고    scopus 로고
    • Generalized Clustering Conditions of Jack Polynomials at Negative Jack Parameter
    • B. A. Bernevig and F. D. M. Haldane, Generalized Clustering Conditions of Jack Polynomials at Negative Jack Parameter, Phys. Rev. B 77, 2008, 184502.
    • (2008) Phys. Rev. B , vol.77 , pp. 184502
    • Bernevig, B.A.1    Haldane, F.D.M.2
  • 37
    • 57749089579 scopus 로고    scopus 로고
    • Properties of Non- Abelian Fractional Quantum Hall States at Filling
    • B. A. Bernevig and F. D. M. Haldane, Properties of Non- Abelian Fractional Quantum Hall States at Filling k=r, Phys. Rev. Lett. 101, 2008, 246806.
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 246806
    • Bernevig, B.A.1    Haldane, F.D.M.2
  • 38
    • 45249113015 scopus 로고    scopus 로고
    • Classication of Symmetric Polynomials of Infinite Variables: Construction of Abelian and Non-Abelian Quantum Hall States
    • X.-G. Wen and Z. Wang, Classication of Symmetric Polynomials of Infinite Variables: Construction of Abelian and Non-Abelian Quantum Hall States, Phys. Rev. B 77, 2008, 235108.
    • (2008) Phys. Rev. B , vol.77 , pp. 235108
    • Wen, X.-G.1    Wang, Z.2
  • 39
    • 54449084094 scopus 로고    scopus 로고
    • Topological properties of Abelian and non-Abelian Quantum Hall States from the Pattern of Zeros
    • X.-G. Wen and Z. Wang, Topological properties of Abelian and non-Abelian Quantum Hall States from the Pattern of Zeros, Phys. Rev. B 78, 2008, 155109.
    • (2008) Phys. Rev. B , vol.78 , pp. 155109
    • Wen, X.-G.1    Wang, Z.2
  • 40
    • 78650822312 scopus 로고    scopus 로고
    • Non-Abelian Two- Component Fractional Quantum Hall States
    • M. Barkeshli and X.-G. Wen, Non-Abelian Two- Component Fractional Quantum Hall States, Phys. Rev. B 82, 2010, 233301.
    • (2010) Phys. Rev. B , vol.82 , pp. 233301
    • Barkeshli, M.1    Wen, X.-G.2
  • 41
    • 78650814192 scopus 로고    scopus 로고
    • Classification of Abelian and non-Abelian Multilayer Fractional Quantum Hall States through the Pattern of Zeros
    • M. Barkeshli and X.-G. Wen, Classification of Abelian and non-Abelian Multilayer Fractional Quantum Hall States through the Pattern of Zeros, Phys. Rev. B 82, 2010, 245301.
    • (2010) Phys. Rev. B , vol.82 , pp. 245301
    • Barkeshli, M.1    Wen, X.-G.2
  • 42
    • 60849093559 scopus 로고    scopus 로고
    • Non-Abelian Anyons and Interferometry
    • Ph.D. thesis, California Institute of Technology,
    • P. Bonderson, Non-Abelian Anyons and Interferometry, Ph.D. thesis, California Institute of Technology, 2007
    • (2007)
    • Bonderson, P.1
  • 43
    • 30444456387 scopus 로고    scopus 로고
    • Anyons in an Exactly Solved Model and Beyond
    • A.Y. Kitaev, Anyons in an Exactly Solved Model and Beyond, Ann. Phys. (N.Y.) 321, 2006, 2.
    • (2006) Ann. Phys. (N.Y.) , vol.21 , pp. 2
    • Kitaev, A.Y.1
  • 44
    • 0010798477 scopus 로고
    • Polynomial Equations for Rational Conformal Field Theories
    • G. Moore and N. Seiberg, Polynomial Equations for Rational Conformal Field Theories, Phys. Lett. B 212, 1988, 451.
    • (1988) Phys. Lett. B , vol.212 , pp. 451
    • Moore, G.1    Seiberg, N.2
  • 45
    • 43049111416 scopus 로고    scopus 로고
    • Degeneracy of Non-Abelian Quantum Hall States on the Torus: Domain Walls and Conformal Field Theory
    • E. Ardonne, E. J. Bergholtz, J. Kailasvuori, and E. Wikberg, Degeneracy of Non-Abelian Quantum Hall States on the Torus: Domain Walls and Conformal Field Theory, J. Stat. Mech. (2008) P04016.
    • (2008) J. Stat. Mech.
    • Ardonne, E.1    Bergholtz, E.J.2    Kailasvuori, J.3    Wikberg, E.4
  • 46
    • 67650283834 scopus 로고    scopus 로고
    • Domain Walls, Fusion Rules, and Conformal Field Theory in the Quantum Hall Regime
    • E. Ardonne, Domain Walls, Fusion Rules, and Conformal Field Theory in the Quantum Hall Regime, Phys. Rev. Lett. 102, 2009, 180401.
    • (2009) Phys. Rev. Lett , vol.102 , pp. 180401
    • Ardonne, E.1
  • 47
    • 0000011912 scopus 로고    scopus 로고
    • Beyond Paired Quantum Hall States: Parafermions and Incompressible States in the First Excited Landau Level
    • N. Read and E. H. Rezayi, Beyond Paired Quantum Hall States: Parafermions and Incompressible States in the First Excited Landau Level, Phys. Rev. B 59, 1999, 8084.
    • (1999) Phys. Rev. B , vol.59 , pp. 8084
    • Read, N.1    Rezayi, E.H.2
  • 48
    • 77955008761 scopus 로고    scopus 로고
    • Non- Abelian Quantum Hall States and their Quasiparticles: From the Pattern of Zeros to Vertex Algebra
    • Y.-M. Lu, X.-G. Wen, Z. Wang, and Z. Wang, Non- Abelian Quantum Hall States and their Quasiparticles: From the Pattern of Zeros to Vertex Algebra, Phys. Rev. B 81, 2010, 115124.
    • (2010) Phys. Rev. B , vol.81 , pp. 115124
    • Lu, Y.-M.1    Wen, X.-G.2    Wang, Z.3    Wang, Z.4
  • 49
    • 4243683825 scopus 로고
    • Many-Particle Translational Symmetries of Two-Dimensional Electrons at Rational Landau-Level Filling
    • F. D. M. Haldane, Many-Particle Translational Symmetries of Two-Dimensional Electrons at Rational Landau-Level Filling, Phys. Rev. Lett. 55, 1985, 2095.
    • (1985) Phys. Rev. Lett. , vol.5 , pp. 2095
    • Haldane M, F.D.1
  • 50
    • 0005303483 scopus 로고
    • Laughlin State on Stretched and Squeezed Cylinders and Edge Excitations in the Quantum Hall Effect
    • E. H. Rezayi and F. D. M. Haldane, Laughlin State on Stretched and Squeezed Cylinders and Edge Excitations in the Quantum Hall Effect, Phys. Rev. B 50, 1994, 17199.
    • (1994) Phys. Rev. B , vol.50 , pp. 17199
    • Rezayi, E.H.1    Haldane, F.D.M.2
  • 51
    • 0000434548 scopus 로고    scopus 로고
    • Quasiholes and Fermionic Zero Modes of Paired Fractional Quantum Hall States: The Mechanism for Non-Abelian Statistics
    • N. Read and E. H. Rezayi, Quasiholes and Fermionic Zero Modes of Paired Fractional Quantum Hall States: The Mechanism for Non-Abelian Statistics, Phys. Rev. B 54, 1996, 16864.
    • (1996) Phys. Rev. B , vol.54 , pp. 16864
    • Read, N.1    Rezayi, E.H.2
  • 52
    • 33744723980 scopus 로고
    • Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States
    • F. D. M. Haldane, Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States, Phys. Rev. Lett. 51, 1983, 605.
    • (1983) Phys. Rev. Lett. , vol.1 , pp. 605
    • Haldane M, F.D.1
  • 53
    • 0001416376 scopus 로고
    • Fractional Statistics on a Torus
    • T. Einarsson Fractional Statistics on a Torus, Phys. Rev. Lett. 64, 1990, 1995.
    • (1990) Phys. Rev. Lett. , vol.64 , pp. 995
    • Einarsson, T.1
  • 54
    • 0000021995 scopus 로고
    • Exact Results for the Fractional Quantum Hall Effect with General Interactions
    • S. A. Trugman and S. Kivelson, Exact Results for the Fractional Quantum Hall Effect with General Interactions, Phys. Rev. B 31, 1985, 5280.
    • (1985) Phys. Rev. B , vol.1 , pp. 5280
    • Trugman, S.A.1    Kivelson, S.2
  • 55
    • 0001006643 scopus 로고
    • Fractional Quantization of Hall Conductance
    • R. Tao and D. J. Thouless, Fractional Quantization of Hall Conductance, Phys. Rev. B 28, 1983, 1142.
    • (1983) Phys. Rev. B , vol.28 , pp. 1142
    • Tao, R.1    Thouless, D.J.2
  • 56
    • 56349102139 scopus 로고    scopus 로고
    • Symmetry Breaking in Laughlin's State on a Cylinder
    • S. Jansen, E. H. Lieb, and R. Seiler, Symmetry Breaking in Laughlin's State on a Cylinder, Commun. Math. Phys. 285, 2008, 503.
    • (2008) Commun. Math. Phys. , vol.285 , pp. 503
    • Jansen, S.1    Lieb, E.H.2    Seiler, R.3
  • 58
    • 84865121515 scopus 로고    scopus 로고
    • The other sector can be reached by multiplication with i i.
    • The other sector can be reached by multiplication with i i.
  • 59
    • 84865141718 scopus 로고    scopus 로고
    • An hy-dependent phase has been dropped for simplicity. As a result, note that the original Laughlin state Eq. (24) is single valued in hy, whereas Eq. (25) is not.
    • An hy-dependent phase has been dropped for simplicity. As a result, note that the original Laughlin state Eq. (24) is single valued in hy, whereas Eq. (25) is not.
  • 60
    • 0002207807 scopus 로고
    • Quantal Phase Factors Accompanying Adiabatic Changes
    • M.V. Berry, Quantal Phase Factors Accompanying Adiabatic Changes, Proc. R. Soc. A 392, 1984, 45.
    • (1984) Proc. R. Soc. A , vol.92 , pp. 45
    • Berry, M.V.1
  • 62
    • 0001504431 scopus 로고
    • Appearance of Gauge Structure in Simple Dynamical Systems
    • F. Wilczek and A. Zee, Appearance of Gauge Structure in Simple Dynamical Systems, Phys. Rev. Lett. 52, 1984, 2111.
    • (1984) Phys. Rev. Lett. , vol.52 , pp. 2111
    • Wilczek, F.1    Zee, A.2
  • 63
    • 84865143305 scopus 로고    scopus 로고
    • Some care must be given to fermion negative signs at odd denominator filling factors, in equations such as (39), (40), and (17). See Ref. [23].
    • Some care must be given to fermion negative signs at odd denominator filling factors, in equations such as (39), (40), and (17). See Ref. [23].
  • 65
    • 84865141805 scopus 로고    scopus 로고
    • Note that a coordinate shift in particular, changes both the magnetic vector potential and thequasiperiodic boundary condition in x on wave functions. The constant in A 0 determines the locations of the LLL orbitals 'n. An additional phase twist in the magnetic boundary condition in x does the same for the orbitals 'n. In this sense, fixing and the magnetic boundary conditions leads to a preferred set of coordinate systems on the torus, which, up to scaling (!), is symmetric with respect to the LLL basesn and n. Here, the index n is always defined via properties under magnetic translations, Eq. (6).
    • Note that a coordinate shift in particular, changes both the magnetic vector potential and thequasiperiodic boundary condition in x on wave functions. The constant in A 0 determines the locations of the LLL orbitals 'n. An additional phase twist in the magnetic boundary condition in x does the same for the orbitals 'n. In this sense, fixing and the magnetic boundary conditions leads to a preferred set of coordinate systems on the torus, which, up to scaling (!), is symmetric with respect to the LLL basesn and n. Here, the index n is always defined via properties under magnetic translations, Eq. (6).
  • 66
    • 84865141717 scopus 로고    scopus 로고
    • One may consider a generalized version of the coherent state (66), with replaced by1 in the first factor, and by2 in the second. Consistent behavior of this expression under requires12 mod= . Consistent behavior under I requires12 mod= . This indicates that either1;2 0 mod=
    • One may consider a generalized version of the coherent state (66), with replaced by1 in the first factor, and by2 in the second. Consistent behavior of this expression under requires12 mod= . Consistent behavior under I requires12 mod= . This indicates that either1;2 0 mod=
  • 67
    • 84865141808 scopus 로고    scopus 로고
    • or1;2=2mod=2 . We can then take12 without loss of generality, since shiftingi by=
    • or1;2=2mod=2 . We can then take12 without loss of generality, since shiftingi by=
  • 68
    • 84865141807 scopus 로고    scopus 로고
    • only results in an overall change of phase; cf. Sec. III B, where furthermore
    • only results in an overall change of phase; cf. Sec. III B, where furthermore
  • 69
    • 84865141719 scopus 로고    scopus 로고
    • 1=2 is derived.
    • 1=2 is derived.
  • 70
    • 84865121514 scopus 로고    scopus 로고
    • Here, an additional phase factor eithat was present in Eq. (79), which would arise in the off-diagonal matrix element with the conventions of the preceding sections, has been absorbed into a sign convention for the adiabatically continued domain-wall state basis.
    • Here, an additional phase factor eithat was present in Eq. (79), which would arise in the off-diagonal matrix element with the conventions of the preceding sections, has been absorbed into a sign convention for the adiabatically continued domain-wall state basis.
  • 71
    • 84865143308 scopus 로고    scopus 로고
    • Other choices for the configurations of the quasiholes will result in the same braiding matrices, as it should be.
    • Other choices for the configurations of the quasiholes will result in the same braiding matrices, as it should be.
  • 72
    • 84865121517 scopus 로고    scopus 로고
    • We leave it understood that this relation holds modulo 2.
    • We leave it understood that this relation holds modulo 2.
  • 73
    • 0035486388 scopus 로고    scopus 로고
    • Quantum Groups and Non-Abelian Braiding in Quantum Hall Systems
    • J. K. Slingerland and F. A. Bais, Quantum Groups and Non-Abelian Braiding in Quantum Hall Systems, Nucl. Phys. B612, 2001, 229.
    • (2001) Nucl. Phys. B , vol.612 , pp. 229
    • Slingerl, J.K.1    Bais, F.A.2
  • 74
    • 84865121516 scopus 로고    scopus 로고
    • Lecture Notes for Physics 219: Quantum Computation , x.
    • J. Preskill Lecture Notes for Physics 219: Quantum Computation (2004),http://www.theory.caltech.edu/ ~preskill/ph219/topological.pdf.
    • (2004)
    • Preskill, J.1
  • 75
    • 84865143311 scopus 로고    scopus 로고
    • Private communication)
    • P. Bonderson (private communication).
    • Bonderson, P.1
  • 76
    • 33846954341 scopus 로고    scopus 로고
    • Construction of a Paired Wave Function for Spinless Electrons at Filling Fraction 2=5
    • S. H. Simon, E. H. Rezayi, N. R. Cooper, and I. Berdnikov, Construction of a Paired Wave Function for Spinless Electrons at Filling Fraction 2=5, Phys. Rev. B 75, 2007, 75317.
    • (2007) Phys. Rev. B , vol.75 , pp. 75317
    • Simon, S.H.1    Rezayi, E.H.2    Cooper, N.R.3    Berdnikov, I.4
  • 77
    • 84865143309 scopus 로고    scopus 로고
    • In this case, Eqs. (B5d) and (B8b) imply 3 p , and 44j from Eq. (B5e). From Eq. (B12), we must then have 1 1 0, hence, 2p3. The absolute values in Eq. (B14) therefore work out, and Eq. (B14) must thus hold for some phase2, which is then defined through this equation.
    • In this case, Eqs. (B5d) and (B8b) imply 3 p , and 44j from Eq. (B5e). From Eq. (B12), we must then have 1 1 0, hence, 2p3. The absolute values in Eq. (B14) therefore work out, and Eq. (B14) must thus hold for some phase2, which is then defined through this equation.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.