-
1
-
-
66449130966
-
Adaptive dynamic programming: An introduction
-
F.-Y. Wang, H. Zhang, and D. Liu, "Adaptive dynamic programming: An introduction," IEEE Computational Intelligence Magazine, pp. 39-47, 2009.
-
(2009)
IEEE Computational Intelligence Magazine
, pp. 39-47
-
-
Wang, F.-Y.1
Zhang, H.2
Liu, D.3
-
3
-
-
85012688561
-
-
Princeton NJ USA: Princeton University Press
-
R. E. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton University Press, 1957.
-
(1957)
Dynamic Programming
-
-
Bellman, R.E.1
-
5
-
-
33847202724
-
Learning to predict by the methods of temporal differences
-
R. S. Sutton, "Learning to predict by the methods of temporal differences," Machine Learning, vol. 3, pp. 9-44, 1988.
-
(1988)
Machine Learning
, vol.3
, pp. 9-44
-
-
Sutton, R.S.1
-
6
-
-
0002031779
-
Approximating dynamic programming for real-time control and neural modeling
-
editors White and Sofge, Chapter 13
-
P. J. Werbos, "Approximating dynamic programming for real-time control and neural modeling." Handbook of Intelligent Control, editors White and Sofge, Chapter 13, pp. 493-525, 1992.
-
(1992)
Handbook of Intelligent Control
, pp. 493-525
-
-
Werbos, P.J.1
-
12
-
-
71149099079
-
Fast gradient-descent methods for temporal-difference learning with linear function approximation
-
New York, NY, USA: ACM
-
R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and E. Wiewiora, "Fast gradient-descent methods for temporal-difference learning with linear function approximation," in Proceedings of the 26th Annual International Conference on Machine Learning, ser. ICML '09. New York, NY, USA: ACM, 2009, pp. 993-1000.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning, Ser. ICML '09
, pp. 993-1000
-
-
Sutton, R.S.1
Maei, H.R.2
Precup, D.3
Bhatnagar, S.4
Silver, D.5
Szepesvári, C.6
Wiewiora, E.7
-
13
-
-
79951481923
-
Convergent temporal-difference learning with arbitrary smooth function approximation
-
MIT Press
-
H. Maei, C. Szepesvari, S. Bhatnager, D. Precup, D. Silver, and R. Sutton, "Convergent temporal-difference learning with arbitrary smooth function approximation," in Advances in Neural Information Processing Systems (NIPS'09). MIT Press, 2009.
-
(2009)
Advances in Neural Information Processing Systems (NIPS'09)
-
-
Maei, H.1
Szepesvari, C.2
Bhatnager, S.3
Precup, D.4
Silver, D.5
Sutton, R.6
-
19
-
-
85151728371
-
Residual algorithms: Reinforcement learning with function approximation
-
L. C. Baird, "Residual algorithms: Reinforcement learning with function approximation," in International Conference on Machine Learning, 1995, pp. 30-37.
-
(1995)
International Conference on Machine Learning
, pp. 30-37
-
-
Baird, L.C.1
-
20
-
-
0029752470
-
Feature-based methods for large scale dynamic programming
-
J. N. Tsitsiklis and B. Van Roy, "Feature-based methods for large scale dynamic programming," Machine Learning, vol. 22, no. 1-3, pp. 59-94, 1996.
-
(1996)
Machine Learning
, vol.22
, Issue.1-3
, pp. 59-94
-
-
Tsitsiklis, J.N.1
Van Roy, B.2
-
21
-
-
84898939480
-
Policy gradient methods for reinforcement learning with function approximation
-
R. S. Sutton, D. Mcallester, S. Singh, and Y. Mansour, "Policy gradient methods for reinforcement learning with function approximation," in Advances in Neural Information Processing Systems 12, vol. 12, 2000, pp. 1057-1063.
-
(2000)
Advances in Neural Information Processing Systems 12
, vol.12
, pp. 1057-1063
-
-
Sutton, R.S.1
McAllester, D.2
Singh, S.3
Mansour, Y.4
|