메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1-6

Violent flows: Real-time detection of violent crowd behavior

Author keywords

[No Author keywords available]

Indexed keywords

CROWD BEHAVIOR; DATA SETS; DESCRIPTORS; EMPIRICAL TEST; FRAME SEQUENCES; LINEAR SVM; REAL-TIME DETECTION; SURVEILLANCE VIDEO; VIDEO SCREENS;

EID: 84864980012     PISSN: 21607508     EISSN: 21607516     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2012.6239348     Document Type: Conference Paper
Times cited : (526)

References (33)
  • 1
    • 79951632091 scopus 로고    scopus 로고
    • Silhouette-based gesture and action recognition via modeling trajectories on riemannian shape manifolds
    • M. Abdelkader, W. Abd-Almageed, A. Srivastava, and R. Chellappa. Silhouette-based gesture and action recognition via modeling trajectories on riemannian shape manifolds. CVIU, 115(3):439-455, 2011.
    • (2011) CVIU , vol.115 , Issue.3 , pp. 439-455
    • Abdelkader, M.1    Abd-Almageed, W.2    Srivastava, A.3    Chellappa, R.4
  • 3
    • 73849126715 scopus 로고    scopus 로고
    • Human action recognition in videos using kinematic features and multiple instance learning
    • S. Ali and M. Shah. Human action recognition in videos using kinematic features and multiple instance learning. TPAMI, 32(2):288-303, 2010.
    • (2010) TPAMI , vol.32 , Issue.2 , pp. 288-303
    • Ali, S.1    Shah, M.2
  • 4
    • 78650514304 scopus 로고    scopus 로고
    • Approximate nearest subspace search
    • R. Basri, T. Hassner, and L. Zelnik-Manor. Approximate nearest subspace search. TPAMI, 33(2):266-278, 2011.
    • (2011) TPAMI , vol.33 , Issue.2 , pp. 266-278
    • Basri, R.1    Hassner, T.2    Zelnik-Manor, L.3
  • 6
    • 34247614190 scopus 로고    scopus 로고
    • Detecting irregularities in images and in video
    • O. Boiman and M. Irani. Detecting irregularities in images and in video. IJCV, 74(1):17-31, 2007.
    • (2007) IJCV , vol.74 , Issue.1 , pp. 17-31
    • Boiman, O.1    Irani, M.2
  • 7
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. TIST, 2(3):27:1-27:27, 2011. www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2011) TIST , vol.2 , Issue.3
    • Chang, C.-C.1    Lin, C.-J.2
  • 8
    • 33846623313 scopus 로고    scopus 로고
    • Audio-visual event recognition in surveillance video sequences
    • M. Cristani, M. Bicego, and V. Murino. Audio-visual event recognition in surveillance video sequences. IEEE Trans. Multimedia, 9(2):257-267, 2007.
    • (2007) IEEE Trans. Multimedia , vol.9 , Issue.2 , pp. 257-267
    • Cristani, M.1    Bicego, M.2    Murino, V.3
  • 9
    • 33846622081 scopus 로고    scopus 로고
    • Behavior recognition via sparse spatio-temporal features
    • P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition via sparse spatio-temporal features. In VS-PETS, pages 65-72, 2005.
    • (2005) VS-PETS , pp. 65-72
    • Dollár, P.1    Rabaud, V.2    Cottrell, G.3    Belongie, S.4
  • 10
    • 79952510777 scopus 로고    scopus 로고
    • Identifying surprising events in videos using bayesian topic models
    • A. Hendel, D.Weinshall, and S. Peleg. Identifying surprising events in videos using bayesian topic models. ACCV, pages 448-459, 2011.
    • (2011) ACCV , pp. 448-459
    • Hendel, A.1    Weinshall, D.2    Peleg, S.3
  • 11
    • 84866693713 scopus 로고    scopus 로고
    • Recognizing gestures by learning local motion signatures of HOG descriptors
    • M. Kaâniche and F. Brémond. Recognizing gestures by learning local motion signatures of HOG descriptors. TPAMI, 2012.
    • TPAMI , vol.2012
    • Kaâniche, M.1    Brémond, F.2
  • 12
    • 50649103739 scopus 로고    scopus 로고
    • Event detection in crowded videos
    • Y. Ke, R. Sukthankar, and M. Hebert. Event detection in crowded videos. In ICCV, pages 1-8, 2007.
    • (2007) ICCV , pp. 1-8
    • Ke, Y.1    Sukthankar, R.2    Hebert, M.3
  • 13
    • 84898491875 scopus 로고    scopus 로고
    • Human activity recognition using a dynamic texture based method
    • V. Kellokumpu, G. Zhao, and M. Pietikainen. Human activity recognition using a dynamic texture based method. In BMVC, pages 1-10, 2008.
    • (2008) BMVC , pp. 1-10
    • Kellokumpu, V.1    Zhao, G.2    Pietikainen, M.3
  • 16
    • 84856139547 scopus 로고    scopus 로고
    • The action similarity labeling challenge
    • O. Kliper-Gross, T. Hassner, and L. Wolf. The action similarity labeling challenge. TPAMI, (99):1-1, 2012.
    • TPAMI , Issue.99
    • Kliper-Gross, O.1    Hassner, T.2    Wolf, L.3
  • 17
    • 77955993558 scopus 로고    scopus 로고
    • Learning a hierarchy of discriminative space-time neighborhood features for human action recognition
    • A. Kovashka and K. Grauman. Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. In CVPR, pages 2046-2053, 2010.
    • (2010) CVPR , pp. 2046-2053
    • Kovashka, A.1    Grauman, K.2
  • 18
    • 24944451092 scopus 로고    scopus 로고
    • On space-time interest points
    • I. Laptev. On space-time interest points. IJCV, 64(2):107-123, 2005.
    • (2005) IJCV , vol.64 , Issue.2 , pp. 107-123
    • Laptev, I.1
  • 19
    • 51949083365 scopus 로고    scopus 로고
    • Learning realistic human actions from movies
    • I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from movies. In CVPR, pages 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Laptev, I.1    Marszalek, M.2    Schmid, C.3    Rozenfeld, B.4
  • 20
    • 76249097055 scopus 로고    scopus 로고
    • Weakly-supervised violence detection in movies with audio and video based co-training
    • J. Lin and W. Wang. Weakly-supervised violence detection in movies with audio and video based co-training. Advances in Multimedia Information Processing-PCM, pages 930-935, 2009.
    • (2009) Advances in Multimedia Information Processing-PCM , pp. 930-935
    • Lin, J.1    Wang, W.2
  • 21
    • 0002248235 scopus 로고    scopus 로고
    • Recognizing people by their gait: The shape of motion
    • J. Little and J. Boyd. Recognizing people by their gait: the shape of motion. J. of Comp. Vision Research, 1(2):1-32, 1998.
    • (1998) J. of Comp. Vision Research , vol.1 , Issue.2 , pp. 1-32
    • Little, J.1    Boyd, J.2
  • 23
    • 70450203660 scopus 로고    scopus 로고
    • Recognizing realistic actions from videos 'in the wild'
    • J. Liu, J. Luo, and M. Shah. Recognizing realistic actions from videos 'in the wild'. In CVPR, pages 1996-2003, 2009.
    • (2009) CVPR , pp. 1996-2003
    • Liu, J.1    Luo, J.2    Shah, M.3
  • 24
    • 34948829111 scopus 로고    scopus 로고
    • A hierarchical model of shape and appearance for human action classification
    • J. C. Niebles and L. Fei-Fei. A hierarchical model of shape and appearance for human action classification. In CVPR, pages 1-8, 2007.
    • (2007) CVPR , pp. 1-8
    • Niebles, J.C.1    Fei-Fei, L.2
  • 25
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. TPAMI, 24(7), 2002.
    • (2002) TPAMI , vol.24 , pp. 7
    • Ojala, T.1    Pietikäinen, M.2    Mäenpää, T.3
  • 28
    • 77953226142 scopus 로고    scopus 로고
    • Tracking in unstructured crowded scenes
    • M. Rodriguez, S. Ali, and T. Kanade. Tracking in unstructured crowded scenes. In ICCV, pages 1389-1396, 2009.
    • (2009) ICCV , pp. 1389-1396
    • Rodriguez, M.1    Ali, S.2    Kanade, T.3
  • 29
    • 51949084792 scopus 로고    scopus 로고
    • Action mach: A spatio-temporal maximum average correlation height filter for action recognition
    • M. D. Rodriguez, J. Ahmed, and M. Shah. Action mach: A spatio-temporal maximum average correlation height filter for action recognition. In CVPR, pages 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Rodriguez, M.D.1    Ahmed, J.2    Shah, M.3
  • 30
    • 51949101597 scopus 로고    scopus 로고
    • Action snippets: How many frames does human action recognition require?
    • K. Schindler and L. V. Gool. Action snippets: How many frames does human action recognition require? In CVPR, pages 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Schindler, K.1    Gool, L.V.2
  • 31
    • 34948845616 scopus 로고    scopus 로고
    • Matching local self-similarities across images and videos
    • E. Shechtman and M. Irani. Matching local self-similarities across images and videos. In CVPR, pages 1-8, 2007.
    • (2007) CVPR , pp. 1-8
    • Shechtman, E.1    Irani, M.2
  • 32
    • 77953205594 scopus 로고    scopus 로고
    • Local trinary patterns for human action recognition
    • L. Yeffet and L. Wolf. Local trinary patterns for human action recognition. In ICCV, pages 492-497, 2009.
    • (2009) ICCV , pp. 492-497
    • Yeffet, L.1    Wolf, L.2
  • 33
    • 34247557079 scopus 로고    scopus 로고
    • Dynamic texture recognition using local binary patterns with an application to facial expressions
    • G. Zhao and M. Pietikainen. Dynamic texture recognition using local binary patterns with an application to facial expressions. In TPAMI, volume 29, pages 915-928, 2007.
    • (2007) TPAMI , vol.29 , pp. 915-928
    • Zhao, G.1    Pietikainen, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.