메뉴 건너뛰기




Volumn 32, Issue , 2012, Pages 320-330

Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine

Author keywords

Performance degradation; Prognostics; Proportional hazard model; Remaining useful life; Support vector machine

Indexed keywords

CONDITION BASED MAINTENANCE; DEGRADATION INDEX; IDENTIFICATION MODEL; LAST STAGE; MACHINE HEALTH; MACHINE LEARNING TECHNIQUES; MACHINE PERFORMANCE; MACHINE STATE; MAINTENANCE COST; NORMAL OPERATING CONDITIONS; PERFORMANCE DEGRADATION; PROGNOSTICS; PROPORTIONAL HAZARD MODELS; REMAINING USEFUL LIFE PREDICTIONS; REMAINING USEFUL LIVES; RESIDUAL ERROR; ROOT MEAN SQUARE; SURVIVAL FUNCTION; SYSTEM BEHAVIORS; THREE-STAGE METHOD;

EID: 84864976814     PISSN: 08883270     EISSN: 10961216     Source Type: Journal    
DOI: 10.1016/j.ymssp.2012.02.015     Document Type: Article
Times cited : (241)

References (26)
  • 1
    • 58049190180 scopus 로고    scopus 로고
    • Rotating machinery prognostics: State of the art, challenges and opportunities
    • A. Heng, S. Zhang, A.C.C. Tan, and J. Mathew Rotating machinery prognostics: state of the art, challenges and opportunities Mech. Syst. Sig. Process. 23 2009 724 739
    • (2009) Mech. Syst. Sig. Process. , vol.23 , pp. 724-739
    • Heng, A.1    Zhang, S.2    Tan, A.C.C.3    Mathew, J.4
  • 2
    • 5044252073 scopus 로고    scopus 로고
    • Robust performance degradation assessment methods for enhanced rolling element bearing prognostics
    • H. Qiu, J. Lee, J. Lin, and G. Yu Robust performance degradation assessment methods for enhanced rolling element bearing prognostics Adv. Eng. Inf. 17 2003 127 140
    • (2003) Adv. Eng. Inf. , vol.17 , pp. 127-140
    • Qiu, H.1    Lee, J.2    Lin, J.3    Yu, G.4
  • 3
    • 0030261802 scopus 로고    scopus 로고
    • Measurement of machine performance degradation using a neural network model
    • J. Lee Measurement of machine performance degradation using a neural network model Comput. Ind. 30 1996 193 209
    • (1996) Comput. Ind. , vol.30 , pp. 193-209
    • Lee, J.1
  • 4
    • 84865012036 scopus 로고
    • Monitor machine degradation using an enhanced CMAC neural network
    • J. Lee, and B.M. Kramer Monitor machine degradation using an enhanced CMAC neural network IEEE Int. Conf. Syst. Man Cybern. 2 1992 1010 1015
    • (1992) IEEE Int. Conf. Syst. Man Cybern. , vol.2 , pp. 1010-1015
    • Lee, J.1    Kramer, B.M.2
  • 5
    • 11144301148 scopus 로고    scopus 로고
    • A neural network application for reliability modeling and condition-based predictive maintenance
    • C.C. Lin, and H.Y. Tseng A neural network application for reliability modeling and condition-based predictive maintenance Int. J. Adv. Manuf. Technol. 25 2005 174 179
    • (2005) Int. J. Adv. Manuf. Technol. , vol.25 , pp. 174-179
    • Lin, C.C.1    Tseng, H.Y.2
  • 6
    • 51849142606 scopus 로고    scopus 로고
    • Machine degradation analysis using fuzzy CMAC neural network approach
    • R.Z. Xu, L. Xie, and M.C. Zhang Machine degradation analysis using fuzzy CMAC neural network approach Int. J. Adv. Manuf. Technol. 36 2008 765 772
    • (2008) Int. J. Adv. Manuf. Technol. , vol.36 , pp. 765-772
    • Xu, R.Z.1    Xie, L.2    Zhang, M.C.3
  • 7
    • 2942659638 scopus 로고    scopus 로고
    • Residual life prediction from vibration-based degradation signals: A neural network approach
    • N. Gebraeel, M. Lawley, R. Liu, and V. Parmeshwaran Residual life prediction from vibration-based degradation signals: a neural network approach IEEE Trans. Ind. Electron. 51 2004 694 700
    • (2004) IEEE Trans. Ind. Electron. , vol.51 , pp. 694-700
    • Gebraeel, N.1    Lawley, M.2    Liu, R.3    Parmeshwaran, V.4
  • 8
    • 33749663808 scopus 로고    scopus 로고
    • Residual life predictions for ball bearing based on self-organizing map and back propagation neural networks methods
    • R. Huang, L. Xi, X. Li, C.R. Liu, H. Qiu, and J. Lee Residual life predictions for ball bearing based on self-organizing map and back propagation neural networks methods Mech. Syst. Sig. Process. 21 2007 193 207
    • (2007) Mech. Syst. Sig. Process. , vol.21 , pp. 193-207
    • Huang, R.1    Xi, L.2    Li, X.3    Liu, C.R.4    Qiu, H.5    Lee, J.6
  • 9
    • 67849106386 scopus 로고    scopus 로고
    • A novel method for machine performance degradation assessment based on fixed cycle feature test
    • L. Liao, and J. Lee A novel method for machine performance degradation assessment based on fixed cycle feature test J. Sound Vib. 326 2009 894 908
    • (2009) J. Sound Vib. , vol.326 , pp. 894-908
    • Liao, L.1    Lee, J.2
  • 11
    • 73249127792 scopus 로고    scopus 로고
    • A lean model for performance assessment of machinery using second generation wavelet packet transform and Fisher criterion
    • Y. Huang, C. Liu, X.F. Zha, and Y. Li A lean model for performance assessment of machinery using second generation wavelet packet transform and Fisher criterion Expert Syst. Appl. 37 2010 3815 3822
    • (2010) Expert Syst. Appl. , vol.37 , pp. 3815-3822
    • Huang, Y.1    Liu, C.2    Zha, X.F.3    Li, Y.4
  • 12
    • 70350764824 scopus 로고    scopus 로고
    • Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means
    • Y. Pan, J. Chen, and X. Li Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means Mech. Syst. Sig. Process. 24 2010 559 566
    • (2010) Mech. Syst. Sig. Process. , vol.24 , pp. 559-566
    • Pan, Y.1    Chen, J.2    Li, X.3
  • 13
    • 34250195361 scopus 로고    scopus 로고
    • Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model
    • H. Liao, W. Zhao, and H. Guo Predicting remaining useful life of an individual unit using proportional hazards model and logistic regression model Reliab.Maintainab. Symp. 2006 127 132
    • (2006) Reliab.Maintainab. Symp. , pp. 127-132
    • Liao, H.1    Zhao, W.2    Guo, H.3
  • 14
    • 27944498274 scopus 로고    scopus 로고
    • Degradation assessment and fault modes classification using logistic regression
    • J. Yan, and J. Lee Degradation assessment and fault modes classification using logistic regression ASME Trans. J. Manuf. Sci. Eng. 127 4 2005 207 912
    • (2005) ASME Trans. J. Manuf. Sci. Eng. , vol.127 , Issue.4 , pp. 207-912
    • Yan, J.1    Lee, J.2
  • 15
    • 9744242805 scopus 로고    scopus 로고
    • A prognostic algorithm for machine performance assessment and its application
    • J. Yan, M. Koç, and J. Lee A prognostic algorithm for machine performance assessment and its application Prod. Plann. Control 15 8 2004 796 801
    • (2004) Prod. Plann. Control , vol.15 , Issue.8 , pp. 796-801
    • Yan, J.1    Koç, M.2    Lee, J.3
  • 16
    • 77949658813 scopus 로고    scopus 로고
    • Application of relevance vector machine and logistic regression for machine degradation assessment
    • W. Caesarendra, A. Widodo, and B.S. Yang Application of relevance vector machine and logistic regression for machine degradation assessment Mech. Syst. Sig. Process. 24 4 2010 1161 1171
    • (2010) Mech. Syst. Sig. Process. , vol.24 , Issue.4 , pp. 1161-1171
    • Caesarendra, W.1    Widodo, A.2    Yang, B.S.3
  • 18
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • G.P. Zhang Time series forecasting using a hybrid ARIMA and neural network model Neurocomputing 50 2003 159 175
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 20
    • 0036543469 scopus 로고    scopus 로고
    • Automatic spectral analysis with time series models
    • P.M.T. Broersen Automatic spectral analysis with time series models IEEE Trans. Instrum. Meas. 51 2002 211 216
    • (2002) IEEE Trans. Instrum. Meas. , vol.51 , pp. 211-216
    • Broersen, P.M.T.1
  • 22
    • 0000336139 scopus 로고
    • Regression models and life-table
    • D.R. Cox Regression models and life-table J. R. Stat. Soc. Ser. B 34 2 1972 187 220
    • (1972) J. R. Stat. Soc. Ser. B , vol.34 , Issue.2 , pp. 187-220
    • Cox, D.R.1
  • 24
    • 84887252594 scopus 로고    scopus 로고
    • Support vector machine for function approximation regression estimation and signal processing
    • V.N. Vapnik, S. Golowich, and A. Smola Support vector machine for function approximation regression estimation and signal processing Adv. Neural Inf. Proc. Syst. 9 1996 281 287
    • (1996) Adv. Neural Inf. Proc. Syst. , vol.9 , pp. 281-287
    • Vapnik, V.N.1    Golowich, S.2    Smola, A.3
  • 25
    • 41649101903 scopus 로고    scopus 로고
    • Machine condition prognosis based on regression trees and one-step-ahead prediction
    • V.T. Tran, B.S. Yang, M.S. Oh, and A.C.C. Tan Machine condition prognosis based on regression trees and one-step-ahead prediction Mech. Syst. Sig. Process. 22 2008 1179 1193
    • (2008) Mech. Syst. Sig. Process. , vol.22 , pp. 1179-1193
    • Tran, V.T.1    Yang, B.S.2    Oh, M.S.3    Tan, A.C.C.4
  • 26
    • 60849139057 scopus 로고    scopus 로고
    • Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems
    • V.T. Tran, B.S. Yang, and A.C.C. Tan Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems Expert Syst. Appl. 36 2009 9378 9387
    • (2009) Expert Syst. Appl. , vol.36 , pp. 9378-9387
    • Tran, V.T.1    Yang, B.S.2    Tan, A.C.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.