메뉴 건너뛰기




Volumn , Issue , 2011, Pages 6849-6852

Phenotype prediction by integrative network analysis of SNP and gene expression microarrays

Author keywords

[No Author keywords available]

Indexed keywords

ACUTE LYMPHOBLASTIC LEUKEMIA; BIOMEDICAL RESEARCH; CLINICAL PRACTICES; DATA SETS; DISEASE ETIOLOGY; EXPRESSION MICROARRAY; GENE EXPRESSION MICROARRAY; GENE TRANSCRIPTS; GENETIC PROCESS; LONG-TERM GOALS; MICROARRAY TECHNOLOGIES; NETWORK LEARNING; NETWORK MODELS; NETWORK-BASED APPROACH; SINGLE NUCLEOTIDE POLYMORPHISMS; VARIABLE SELECTION;

EID: 84864615989     PISSN: 1557170X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IEMBS.2011.6091689     Document Type: Conference Paper
Times cited : (13)

References (14)
  • 1
    • 77954407332 scopus 로고    scopus 로고
    • Genomewide association studies and assessment of the risk of disease
    • Jul 8
    • T. A. Manolio, "Genomewide association studies and assessment of the risk of disease," N Engl J Med, vol. 363, no. 2, pp. 166-76, Jul 8, 2010.
    • (2010) N Engl J Med , vol.363 , Issue.2 , pp. 166-176
    • Manolio, T.A.1
  • 2
    • 78650979474 scopus 로고    scopus 로고
    • A transcriptional network signature characterizes lung cancer subtypes
    • Jan 15
    • H. H. Chang, J. M. Dreyfuss, and M. F. Ramoni, "A transcriptional network signature characterizes lung cancer subtypes," Cancer, vol. 117, no. 2, pp. 353-60, Jan 15, 2011.
    • (2011) Cancer , vol.117 , Issue.2 , pp. 353-360
    • Chang, H.H.1    Dreyfuss, J.M.2    Ramoni, M.F.3
  • 3
    • 60849113126 scopus 로고    scopus 로고
    • Transcriptional network classifiers
    • H. H. Chang, and M. F. Ramoni, "Transcriptional network classifiers," BMC Bioinformatics, vol. 10 Suppl 9, pp. S1, 2009.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL. 9
    • Chang, H.H.1    Ramoni, M.F.2
  • 4
    • 58149330480 scopus 로고    scopus 로고
    • Using gene expression to investigate the genetic basis of complex disorders
    • Oct
    • A. C. Nica, and E. T. Dermitzakis, "Using gene expression to investigate the genetic basis of complex disorders," Hum Mol Genet, vol. 17, no. R2, pp. R129-R134, Oct, 2008.
    • (2008) Hum Mol Genet , vol.17 , Issue.R2
    • Nica, A.C.1    Dermitzakis, E.T.2
  • 5
    • 67651108806 scopus 로고    scopus 로고
    • The genetics of quantitative traits: Challenges and prospects
    • Aug
    • T. F. C. Mackay, E. A. Stone, and J. F. Ayroles, "The genetics of quantitative traits: challenges and prospects," Nat Rev Genet, vol. 10, no. 8, pp. 565-577, Aug, 2009.
    • (2009) Nat Rev Genet , vol.10 , Issue.8 , pp. 565-577
    • MacKay, T.F.C.1    Stone, E.A.2    Ayroles, J.F.3
  • 6
    • 78049453940 scopus 로고    scopus 로고
    • Mapping transcription mechanisms from multimodal genomic data
    • H. H. Chang, M. McGeachie, G. Alterovitz et al., "Mapping transcription mechanisms from multimodal genomic data," BMC Bioinformatics, vol. 11 Suppl 9, pp. S2, 2010.
    • (2010) BMC Bioinformatics , vol.11 , Issue.SUPPL. 9
    • Chang, H.H.1    McGeachie, M.2    Alterovitz, G.3
  • 8
    • 34447651339 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from temporal expression profiles under time-delay and noise
    • Aug
    • S. Kim, J. Kim, and K. H. Cho, "Inferring gene regulatory networks from temporal expression profiles under time-delay and noise," Comput Biol Chem, vol. 31, no. 4, pp. 239-45, Aug, 2007.
    • (2007) Comput Biol Chem , vol.31 , Issue.4 , pp. 239-245
    • Kim, S.1    Kim, J.2    Cho, K.H.3
  • 9
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Jan 1
    • M. Zou, and S. D. Conzen, "A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data," Bioinformatics, vol. 21, no. 1, pp. 71-9, Jan 1, 2005.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 10
    • 34547788797 scopus 로고    scopus 로고
    • Bayesian approaches to reverse engineer cellular systems: A simulation study on nonlinear Gaussian networks
    • F. Ferrazzi, P. Sebastiani, M. F. Ramoni et al., "Bayesian approaches to reverse engineer cellular systems: a simulation study on nonlinear Gaussian networks," BMC Bioinformatics, vol. 8 Suppl 5, pp. S2, 2007.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 5
    • Ferrazzi, F.1    Sebastiani, P.2    Ramoni, M.F.3
  • 11
    • 25444489846 scopus 로고    scopus 로고
    • Local propagation in conditional Gaussian Bayesian networks
    • R. G. Cowell, "Local propagation in conditional Gaussian Bayesian networks," Journal of Machine Learning Research, vol. 6, pp. 1517-1550, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1517-1550
    • Cowell, R.G.1
  • 12
    • 58149394484 scopus 로고    scopus 로고
    • Integration of genomic and gene expression data of childhood ALL without known aberrations identifies subgroups with specific genetic hallmarks
    • Jan
    • S. Bungaro, M. C. Dell'Orto, A. Zangrando et al., "Integration of genomic and gene expression data of childhood ALL without known aberrations identifies subgroups with specific genetic hallmarks," Genes Chromosomes Cancer, vol. 48, no. 1, pp. 22-38, Jan, 2009.
    • (2009) Genes Chromosomes Cancer , vol.48 , Issue.1 , pp. 22-38
    • Bungaro, S.1    Dell'Orto, M.C.2    Zangrando, A.3
  • 13
    • 38049126095 scopus 로고    scopus 로고
    • T(6;14)(p22;q32): A new recurrent IGH@ translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL)
    • Jan 1
    • L. J. Russell, T. Akasaka, A. Majid et al., "t(6;14)(p22;q32): a new recurrent IGH@ translocation involving ID4 in B-cell precursor acute lymphoblastic leukemia (BCP-ALL)," Blood, vol. 111, no. 1, pp. 387-91, Jan 1, 2008.
    • (2008) Blood , vol.111 , Issue.1 , pp. 387-391
    • Russell, L.J.1    Akasaka, T.2    Majid, A.3
  • 14
    • 77949536178 scopus 로고    scopus 로고
    • DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia
    • Feb 11
    • L. Milani, A. Lundmark, A. Kiialainen et al., "DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute lymphoblastic leukemia," Blood, vol. 115, no. 6, pp. 1214-25, Feb 11, 2010.
    • (2010) Blood , vol.115 , Issue.6 , pp. 1214-1225
    • Milani, L.1    Lundmark, A.2    Kiialainen, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.