|
Volumn , Issue , 2011, Pages 6487-6490
|
Using multimodal information for the segmentation of fluorescent micrographs with application to Virology and microbiology
a b b b b b a |
Author keywords
[No Author keywords available]
|
Indexed keywords
CELL NUCLEUS;
CELL TYPES;
DATA SETS;
FAST-MARCHING;
GROUND TRUTH;
LARGE DATASETS;
LEVEL SET;
MULTI-MODAL INFORMATION;
OPTIMAL PARAMETER;
REPRODUCIBILITIES;
ROBUST SEGMENTATION;
SEGMENTATION METHODS;
SEGMENTATION QUALITY;
WATERSHED TRANSFORM;
FLUORESCENCE;
FLUORESCENCE MICROSCOPY;
MICROBIOLOGY;
NUMERICAL METHODS;
QUALITY CONTROL;
IMAGE SEGMENTATION;
ALGORITHM;
ANIMAL;
ARTICLE;
AUTOMATED PATTERN RECOGNITION;
BIOLOGY;
CELL NUCLEUS;
CYTOLOGY;
FLUORESCENCE MICROSCOPY;
HELA CELL;
HUMAN;
IMAGE PROCESSING;
INFORMATION PROCESSING;
MACROPHAGE;
METABOLISM;
METHODOLOGY;
MICROBIOLOGICAL EXAMINATION;
MOUSE;
OBSERVER VARIATION;
REPRODUCIBILITY;
STATISTICAL MODEL;
HELA CELL LINE;
ALGORITHMS;
ANIMALS;
AUTOMATIC DATA PROCESSING;
CELL NUCLEUS;
COMPUTATIONAL BIOLOGY;
HELA CELLS;
HUMANS;
IMAGE PROCESSING, COMPUTER-ASSISTED;
MACROPHAGES;
MICE;
MICROBIOLOGICAL TECHNIQUES;
MICROSCOPY, FLUORESCENCE;
MODELS, STATISTICAL;
OBSERVER VARIATION;
PATTERN RECOGNITION, AUTOMATED;
REPRODUCIBILITY OF RESULTS;
|
EID: 84864600922
PISSN: 1557170X
EISSN: None
Source Type: Conference Proceeding
DOI: 10.1109/IEMBS.2011.6091601 Document Type: Conference Paper |
Times cited : (6)
|
References (9)
|