메뉴 건너뛰기




Volumn , Issue , 2011, Pages 7167-7170

Sparse approximation of long-term biomedical signals for classification via dynamic PCA

Author keywords

Dynamic Principal Component Analysis; Feature Extraction; Signal Classification; Sparse Approximation

Indexed keywords

BIOMEDICAL SIGNAL; CLASSIFICATION ACCURACY; DYNAMIC PRINCIPAL COMPONENT ANALYSIS; EEG SIGNALS; ENERGY MEASURE; EPILEPTIC SEIZURE DETECTION; EVENT DETECTION; FEATURE INFORMATION; MOVING WINDOW; MULTIVARIATE STATISTICAL APPROACHES; NONSTATIONARY SIGNALS; NOVEL TECHNIQUES; PRINCIPAL COMPONENTS; SIGNAL CLASSIFICATION; SINGLE CHANNELS; SPARSE APPROXIMATIONS; SPARSE METHODS; SYNTHETIC DATA; SYNTHETIC DATABASE; UNIVARIATE;

EID: 84864582199     PISSN: 1557170X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IEMBS.2011.6091811     Document Type: Conference Paper
Times cited : (7)

References (11)
  • 1
    • 67349125387 scopus 로고    scopus 로고
    • The rold of EEG in epilepsy: A critical review
    • S. Noachtar and J. Rémi, The rold of EEG in epilepsy: A critical review, Epilepsy & Behavior, 15, 2009: 22-33.
    • (2009) Epilepsy & Behavior , vol.15 , pp. 22-33
    • Noachtar, S.1    Rémi, J.2
  • 2
    • 0022345457 scopus 로고
    • Interobserver variability in EEG interpretation
    • G. W. Williams, H. O. Luders, A. Brickner, et al, Interobserver variability in EEG interpretation. Neurology 1985 35: 1714-1719.
    • (1985) Neurology , vol.35 , pp. 1714-1719
    • Williams, G.W.1    Luders, H.O.2    Brickner, A.3
  • 3
    • 31344446168 scopus 로고    scopus 로고
    • Interpreable dimension reduction
    • November
    • H. A. Chipman and H. Gu, Interpreable Dimension Reduction, Journal of Applied Statistics, Vol 32, No.9, 969-987, November 2005.
    • (2005) Journal of Applied Statistics , vol.32 , Issue.9 , pp. 969-987
    • Chipman, H.A.1    Gu, H.2
  • 4
    • 0033551578 scopus 로고    scopus 로고
    • Anticipating epileptic seizures in real time by non-linear analysis of similarity between EEG recordings
    • M. J. Quyen, Martinerie, M. Baulac and F. Varela, Anticipating epileptic seizures in real time by non-linear analysis of similarity between EEG recordings. NeuroReport, vol. 10, no.10, 2149-2155, 1999.
    • (1999) NeuroReport , vol.10 , Issue.10 , pp. 2149-2155
    • Quyen, M.J.1    Baulac, M.M.2    Varela, F.3
  • 5
    • 56349106179 scopus 로고    scopus 로고
    • Crosscorrelation aided support vector machine classifier for classification of EEG signals
    • S. Chandaka, A. Chatterjee, and S. Munshi. Crosscorrelation aided support vector machine classifier for classification of EEG signals. Expert Systems With Applications, 36(2P1):1329-1336, 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 P1 , pp. 1329-1336
    • Chandaka, S.1    Chatterjee, A.2    Munshi, S.3
  • 9
    • 84855433116 scopus 로고    scopus 로고
    • http://www.physionet.org/physiobank/database/?synthetic
  • 10
    • 84855433115 scopus 로고    scopus 로고
    • http://epileptologie-bonn.de/cms/front content.php?idcat=193
  • 11
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • M. Rand, Objective Criteria for the Evaluation of Clustering Methods, Journal of the American Statistical Association, Vol. 66, No. 336, pp. 846-850, 1971.
    • (1971) Journal of the American Statistical Association , vol.66 , Issue.336 , pp. 846-850
    • Rand, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.