메뉴 건너뛰기




Volumn 38, Issue 6, 2012, Pages 1368-1375

Transformer fault diagnosis using self-adaptive RBF neural network algorithm

Author keywords

Dissolved gas analysis(DGA); Fault diagnosis; Fuzzy C means(FCM) algorithm; Gaussian distribution particle swarm optimization(PSO) algorithm; Self adaptive radial basis function(RBF) neural network; Transformer

Indexed keywords

DISSOLVED GAS ANALYSIS; FUZZY C-MEANS ALGORITHMS; PARTICLE SWARM OPTIMIZATION ALGORITHM; RADIAL BASIS FUNCTION NEURAL NETWORKS; TRANSFORMER;

EID: 84864515116     PISSN: 10036520     EISSN: None     Source Type: Journal    
DOI: 10.3969/j.issn.1003-6520.2012.06.013     Document Type: Article
Times cited : (33)

References (25)
  • 1
    • 84864514407 scopus 로고    scopus 로고
    • Design and implementation of a digital comprehensive test system for electric locomotive traction transformer
    • FU Qiang, CHEN Tefang. Design and implementation of a digital comprehensive test system for electric locomotive traction transformer [J]. Computer Measurement & Control, 2008, 16(1): 49-51.
    • (2008) Computer Measurement & Control , vol.16 , Issue.1 , pp. 49-51
    • Fu, Q.1    Chen, T.2
  • 2
    • 49049107557 scopus 로고    scopus 로고
    • Fault diagnostic method for power transformer based on improved wavelet neural network algorithm
    • CHEN Weigen, PAN Chong, YUN Yuxin, et al. Fault diagnostic method for power transformer based on improved wavelet neural network algorithm [J]. Chinese Journal of Scientific Instrument, 2008, 28(7): 1489-1493.
    • (2008) Chinese Journal of Scientific Instrument , vol.28 , Issue.7 , pp. 1489-1493
    • Chen, W.1    Pan, C.2    Yun, Y.3
  • 3
    • 13844281489 scopus 로고    scopus 로고
    • Fault diagnosis of power transformer based on multilayer SVM classifier
    • Ganyun L V, Cheng Haozhong, Zhai Haibao, et al. Fault diagnosis of power transformer based on multilayer SVM classifier [J]. Electric Power System Research, 2005, 74(1): 1-7.
    • (2005) Electric Power System Research , vol.74 , Issue.1 , pp. 1-7
    • Ganyun, L.V.1    Cheng, H.2    Zhai, H.3
  • 4
    • 21444433051 scopus 로고    scopus 로고
    • Synthesized diagnosis on transformer faults based on Bayesian classifier and rough set
    • ZHU Yongli, WU Lizeng, LI Xueyu, et al. Synthesized diagnosis on transformer faults based on Bayesian classifier and rough set [J]. Proceedings of the CSEE, 2005, 25(10): 159-165.
    • (2005) Proceedings of the CSEE , vol.25 , Issue.10 , pp. 159-165
    • Zhu, Y.1    Wu, L.2    Li, X.3
  • 5
    • 77950984915 scopus 로고    scopus 로고
    • Power transformer fault diagnosis using weighted fuzzy kernel clustering
    • FU Yang, TIAN Zhenning, JIANG Yurong, et al. Power transformer fault diagnosis using weighted fuzzy kernel clustering [J]. High Voltage Engineering, 2010, 36(2): 371-374.
    • (2010) High Voltage Engineering , vol.36 , Issue.2 , pp. 371-374
    • Fu, Y.1    Tian, Z.2    Jiang, Y.3
  • 6
    • 84859737388 scopus 로고    scopus 로고
    • Application of information fusion to recognition of partial discharge in transformer
    • CHEN Xingang, TIAN Xiaoxiao, ZHAO Yangyang, et al. Application of information fusion to recognition of partial discharge in transformer [J]. High Voltage Engineering, 2012, 38(3): 553-559.
    • (2012) High Voltage Engineering , vol.38 , Issue.3 , pp. 553-559
    • Chen, X.1    Tian, X.2    Zhao, Y.3
  • 7
    • 77955813861 scopus 로고    scopus 로고
    • Transformer fault diagnosis method using random forests and kernel principle component analysis
    • HU Qing, SUN Caixin, DU Lin, et al. Transformer fault diagnosis method using random forests and kernel principle component analysis [J]. High Voltage Engineering, 2010, 36(7): 1725-1729.
    • (2010) High Voltage Engineering , vol.36 , Issue.7 , pp. 1725-1729
    • Hu, Q.1    Sun, C.2    Du, L.3
  • 8
    • 65249165981 scopus 로고    scopus 로고
    • Fault diagnosis of transformer based on particle swarm optimization-based support vector machine
    • FEI Shengwei, MIAO Yubin, LIU Chengliang, et al. Fault diagnosis of transformer based on particle swarm optimization-based support vector machine [J]. High Voltage Engineering, 2009, 35(3): 509-513.
    • (2009) High Voltage Engineering , vol.35 , Issue.3 , pp. 509-513
    • Fei, S.1    Miao, Y.2    Liu, C.3
  • 9
    • 70349166860 scopus 로고    scopus 로고
    • Power transformer fault diagnosis using RST and NBN
    • HUANG Huixian, XIAO Guizhi, YANG Min. Power transformer fault diagnosis using RST and NBN [J]. High Voltage Engineering, 2009, 35(7): 1589-1594.
    • (2009) High Voltage Engineering , vol.35 , Issue.7 , pp. 1589-1594
    • Huang, H.1    Xiao, G.2    Yang, M.3
  • 10
    • 77950346715 scopus 로고    scopus 로고
    • Dissolved gas analysis in transformer oil using dynamic tunneling fuzzy C-means algorithm
    • CHANG Tao, ZHANG Xiaoxing, XIONG Hao, et al. Dissolved gas analysis in transformer oil using dynamic tunneling fuzzy C-means algorithm [J]. High Voltage Engineering, 2009, 35(9): 2181-2184.
    • (2009) High Voltage Engineering , vol.35 , Issue.9 , pp. 2181-2184
    • Chang, T.1    Zhang, X.2    Xiong, H.3
  • 11
    • 0004030839 scopus 로고
    • A theory of networks for approximation and learning
    • Cambridge, UK: Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge Massachusetts
    • Piggio T, Girosi F. A theory of networks for approximation and learning [R]. Cambridge, UK: Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge Massachusetts, 1989.
    • (1989)
    • Piggio, T.1    Girosi, F.2
  • 12
    • 77952779007 scopus 로고    scopus 로고
    • RBF network learning algorithm using robust least-squares
    • XIE Zhenping, LIU Jihong, WANG Shitong. RBF network learning algorithm using robust least-squares [J]. Control and Decision, 2010, 25(4): 502-506.
    • (2010) Control and Decision , vol.25 , Issue.4 , pp. 502-506
    • Xie, Z.1    Liu, J.2    Wang, S.3
  • 13
    • 33847421698 scopus 로고    scopus 로고
    • A novel continuous forward algorithm for RBF neural modeling
    • Peng Jianxun, Li Kang, Irwin George W. A novel continuous forward algorithm for RBF neural modeling [J]. IEEE Transactions on Automatic Control, 2007, 52(1): 117-122.
    • (2007) IEEE Transactions on Automatic Control , vol.52 , Issue.1 , pp. 117-122
    • Peng, J.1    Li, K.2    Irwin George, W.3
  • 14
    • 28444479310 scopus 로고    scopus 로고
    • An original RBF network learning algorithm
    • SUN Jian, SHEN Ruimin, HAN Peng. An original RBF network learning algorithm [J]. Chinese Journal of Computers, 2003, 26(1): 1562-1567.
    • (2003) Chinese Journal of Computers , vol.26 , Issue.1 , pp. 1562-1567
    • Sun, J.1    Shen, R.2    Han, P.3
  • 15
    • 43749097693 scopus 로고    scopus 로고
    • A combination of rough-based feature selection and RBF neural network for classification using gene expression data
    • Chiang Junghsien, Ho Shinghua. A combination of rough-based feature selection and RBF neural network for classification using gene expression data [J]. IEEE Transactions on Nan-Bioscience, 2008, 7(1): 91-99.
    • (2008) IEEE Transactions on Nan-Bioscience , vol.7 , Issue.1 , pp. 91-99
    • Chiang, J.1    Ho, S.2
  • 16
    • 84864506143 scopus 로고    scopus 로고
    • RBF design method based on center clustering and PSO
    • LIU Jun, SHANG Xiuqin, LU Jiangang, et al. RBF design method based on center clustering and PSO [J]. Computer Engineering and Application, 2009, 45(36): 212-216.
    • (2009) Computer Engineering and Application , vol.45 , Issue.36 , pp. 212-216
    • Liu, J.1    Shang, X.2    Lu, J.3
  • 17
    • 77954834842 scopus 로고    scopus 로고
    • A Self-adaptive RBF neural network classifier for transformer fault analysis
    • Ke Meng, Zhao Yangdong, Dian Huiwang, et al. A Self-adaptive RBF neural network classifier for transformer fault analysis [J]. IEEE Transactions on Power Systems, 2010, 25(3): 1350-1360.
    • (2010) IEEE Transactions on Power Systems , vol.25 , Issue.3 , pp. 1350-1360
    • Ke, M.1    Zhao, Y.2    Dian, H.3
  • 18
    • 36948999941 scopus 로고    scopus 로고
    • UCI machine learning repository
    • Asuncion A, Newman D J. UCI machine learning repository [OB/OL]. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • Asuncion, A.1    Newman, D.J.2
  • 20
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J, Darken C. Fast learning in networks of locally-tuned processing units [J]. Neural Computation, 1989, 1(2): 281-294.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 21
    • 0345330241 scopus 로고    scopus 로고
    • On the fuzziness index of the FCM algorithms
    • YU Jian. On the fuzziness index of the FCM algorithms [J]. Chinese Journal of Computers, 2003, 26(8): 968-973.
    • (2003) Chinese Journal of Computers , vol.26 , Issue.8 , pp. 968-973
    • Yu, J.1
  • 25
    • 84864499921 scopus 로고    scopus 로고
    • Design and research of a digital comprehensive test system for electric locomotive traction transformer
    • Changsha, China: Central South University
    • FU Qiang. Design and research of a digital comprehensive test system for electric locomotive traction transformer [D]. Changsha, China: Central South University, 2008.
    • (2008)
    • Fu, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.