메뉴 건너뛰기




Volumn 49, Issue 6, 2012, Pages 1272-1278

Regularized semi-supervised multi-label learning

Author keywords

Gene functional analysis; Machine learning; Multi label learning; Semi supervised learning; Webpage categorization

Indexed keywords

ALTERNATING OPTIMIZATIONS; CONVERGENCE RATES; EMPIRICAL RISKS; FINAL DECISION; GENERALIZATION PERFORMANCE; GLOBAL OPTIMAL SOLUTIONS; LARGE-SCALE CONVEX OPTIMIZATION; MULTI-LABEL; MULTIPLE CLASS; OBJECTIVE FUNCTIONS; REAL WORLD DATA; REAL-WORLD APPLICATION; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; TRAINING EXAMPLE; WEB-PAGE;

EID: 84864507007     PISSN: 10001239     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (12)

References (25)
  • 2
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • Schapire R E, Singer Y. Boostexter: A boosting-based system for text categorization[J]. Machine Learning, 2000, 39(2/3): 135-168
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 135-168
    • Schapire, R.E.1    Singer, Y.2
  • 4
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • Boutell M R, Luo Jiebo, Shen Xipeng, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3
  • 5
    • 33750718803 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by constrained non-negative matrix factorization
    • Menlo Park: AAAI
    • Liu Yi, Jin Rong, Yang Liu. Semi-supervised multi-label learning by constrained non-negative matrix factorization[C]//Proc of the 21st National Conf on Artificial Intelligence. Menlo Park: AAAI, 2006: 421-426
    • (2006) Proc of the 21st National Conf on Artificial Intelligence , pp. 421-426
    • Liu, Y.1    Jin, R.2    Yang, L.3
  • 6
    • 52649118114 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by Solving a Sylvester equation
    • Los Alamitos, CA: IEEE Computer Society
    • Chen Gang, Song Yangqiu, Wang Fei, et al. Semi-supervised multi-label learning by Solving a Sylvester equation[C]//Proc of SIAM Int Conf on Data Mining. Los Alamitos, CA: IEEE Computer Society, 2008: 410-419
    • (2008) Proc of SIAM Int Conf on Data Mining , pp. 410-419
    • Chen, G.1    Song, Y.2    Wang, F.3
  • 8
    • 77956464907 scopus 로고    scopus 로고
    • A transductive multi-label classification method for weak labeling
    • Chinese source
    • Kong Xiangnan, Li Ming, Jiang Yuan, et al. A transductive multi-label classification method for weak labeling[J]. Journal of Computer Research and Development, 2010, 47(8): 1392-1399 (in Chinese)
    • (2010) Journal of Computer Research and Development , vol.47 , Issue.8 , pp. 1392-1399
    • Kong, X.1    Li, M.2    Jiang, Y.3
  • 9
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Berlin: Springer
    • Joachims T. Text categorization with support vector machines: Learning with many relevant features[C]//Proc of the 10th European Conf on Machine Learning. Berlin: Springer, 1998: 137-142
    • (1998) Proc of the 10th European Conf on Machine Learning , pp. 137-142
    • Joachims, T.1
  • 14
    • 33645323768 scopus 로고    scopus 로고
    • Hierarchical multi-label prediction of gene function
    • Barutcuoglu Z, Schapire R E, Troyanskaya O G. Hierarchical multi-label prediction of gene function[J]. Bioinformatics, 2006, 22(7): 830-836
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 830-836
    • Barutcuoglu, Z.1    Schapire, R.E.2    Troyanskaya, O.G.3
  • 16
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • Zhang Minling, Zhou Zhihua. Multilabel neural networks with applications to functional genomics and text categorization[J]. IEEE Trans on Knowledge and Data Engineering, 2006, 18(10): 1338-1351
    • (2006) IEEE Trans on Knowledge and Data Engineering , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.1    Zhou, Z.2
  • 17
    • 33947681316 scopus 로고    scopus 로고
    • Ml-knn: A lazy learning approach to multi-label learning
    • Zhang Minling, Zhou Zhihua. Ml-knn: A lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.1    Zhou, Z.2
  • 18
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin M, Niyogi P, Sindhwani V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples[J]. The Journal of Machine Learning Research, 2006, 7(11): 2399-2434
    • (2006) The Journal of Machine Learning Research , vol.7 , Issue.11 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 20
    • 0026678659 scopus 로고
    • On the convergence of the coordinate descent method for convex differentiable minimization
    • Luo Zhiquan, Tseng P. On the convergence of the coordinate descent method for convex differentiable minimization[J]. Journal of Optimization Theory and Applications, 1992, 72(1): 7-35
    • (1992) Journal of Optimization Theory and Applications , vol.72 , Issue.1 , pp. 7-35
    • Luo, Z.1    Tseng, P.2
  • 21
  • 25
    • 80955134248 scopus 로고    scopus 로고
    • Multi-instance multi-label learning
    • Zhou Zhihua, Zhang Minling, Huang Shengjun, et al. Multi-instance multi-label learning[J]. Artificial Intelligence, 2012, 176(1): 2291-2320
    • (2012) Artificial Intelligence , vol.176 , Issue.1 , pp. 2291-2320
    • Zhou, Z.1    Zhang, M.2    Huang, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.