-
5
-
-
2442492740
-
-
H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998);
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 5932
-
-
Briegel, H.-J.1
Dür, W.2
Cirac, J.I.3
Zoller, P.4
-
6
-
-
4243059985
-
-
Phys. Rev. Lett.C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, 70, 1895 (1993);
-
(1993)
Phys. Rev. Lett.
, vol.70
, pp. 1895
-
-
Bennett, C.H.1
Brassard, G.2
Crepeau, C.3
Jozsa, R.4
Peres, A.5
Wootters, W.K.6
-
10
-
-
0034694462
-
-
M. Lewenstein, D. Bruss, J. I. Cirac, B. Kraus, M. Kuś, J. Samsonowicz, A. Sanpera, and R. Tarrach, J. Mod. Opt. 47, 2481 (2000).
-
(2000)
J. Mod. Opt.
, vol.47
, pp. 2481
-
-
Lewenstein, M.1
Bruss, D.2
Cirac, J.I.3
Kraus, B.4
Kuś, M.5
Samsonowicz, J.6
Sanpera, A.7
Tarrach, R.8
-
11
-
-
0000660939
-
-
D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Am. J. Phys. 58, 1131 (1990).
-
(1990)
Am. J. Phys.
, vol.58
, pp. 1131
-
-
Greenberger, D.M.1
Horne, M.A.2
Shimony, A.3
Zeilinger, A.4
-
14
-
-
3943078830
-
-
See, however, A. Acin, D. Bruss, M. Lewenstein, and A. Sanpera, Phys. Rev. Lett. 87, 040401 (2001);
-
(2001)
Phys. Rev. Lett.
, vol.87
, pp. 40401
-
-
Acin, A.1
Bruss, D.2
Lewenstein, M.3
Sanpera, A.4
-
16
-
-
4243962237
-
-
C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Phys. Rev. Lett. 82, 5385 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 5385
-
-
Bennett, C.H.1
DiVincenzo, D.P.2
Mor, T.3
Shor, P.W.4
Smolin, J.A.5
Terhal, B.M.6
-
22
-
-
0032561423
-
-
A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, Science 282, 706 (1998).
-
(1998)
Science
, vol.282
, pp. 706
-
-
Furusawa, A.1
Sørensen, J.L.2
Braunstein, S.L.3
Fuchs, C.A.4
Kimble, H.J.5
Polzik, E.S.6
-
23
-
-
0035820799
-
-
Ch. Silberhorn, P. K. Lam, O. Weiss, F. König, N. Korolkova, and G. Leuchs, Phys. Rev. Lett. 86, 4267 (2001);
-
(2001)
Phys. Rev. Lett.
, vol.86
, pp. 4267
-
-
Silberhorn, C.1
Lam, P.K.2
Weiss, O.3
König, F.4
Korolkova, N.5
Leuchs, G.6
-
26
-
-
0000693787
-
-
L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2722
-
-
Duan, L.-M.1
Giedke, G.2
Cirac, J.I.3
Zoller, P.4
-
35
-
-
85037230384
-
-
To be precise, we should define J with an index n to keep track of the dimension of the space (Formula presented) on which it acts. But since n will always be clear from the context we will omit this index and just use J to make the expressions more readable
-
To be precise, we should define J with an index n to keep track of the dimension of the space (Formula presented) on which it acts. But since n will always be clear from the context we will omit this index and just use J to make the expressions more readable.
-
-
-
-
37
-
-
85037238299
-
-
A linear transformation S on phase space is called symplectic if it preserves J, i.e., if (Formula presented) holds. The symplectic transformations contain those physical operations on CV states that can currently be routinely realized in the laboratory. They comprise all unitary operations generated by a Hamiltonian quadratic in the canonical operators (Formula presented) (Formula presented) i.e., in quantum optical terms, beam splitter, phase shifter, and squeezer
-
A linear transformation S on phase space is called symplectic if it preserves J, i.e., if (Formula presented) holds. The symplectic transformations contain those physical operations on CV states that can currently be routinely realized in the laboratory. They comprise all unitary operations generated by a Hamiltonian quadratic in the canonical operators (Formula presented) (Formula presented) i.e., in quantum optical terms, beam splitter, phase shifter, and squeezer.
-
-
-
-
38
-
-
85037210058
-
-
the following, it is convenient to use the notation (Formula presented) for block-diagonal matrices: if A and B are (Formula presented) and (Formula presented) square matrices, respectively, then (Formula presented) is the (Formula presented) square matrix (Formula presented)
-
In the following, it is convenient to use the notation (Formula presented) for block-diagonal matrices: if A and B are (Formula presented) and (Formula presented) square matrices, respectively, then (Formula presented) is the (Formula presented) square matrix (Formula presented)
-
-
-
-
40
-
-
0033699352
-
-
B. Kraus, J. I. Cirac, S. Karnas, and M. Lewenstein, Phys. Rev. A 61, 062302 (2000).
-
(2000)
Phys. Rev. A
, vol.61
, pp. 62302
-
-
Kraus, B.1
Cirac, J.I.2
Karnas, S.3
Lewenstein, M.4
-
41
-
-
85037207628
-
-
The following definitions assume that (Formula presented) [If one of them is 0, the corresponding ellipse degenerates into a circle around (0,0) and we can take an arbitrary (Formula presented) to make sense of (Formula presented)] The criterion is not affected by this assumption, since it relies on Ineqs. (3.21)
-
The following definitions assume that (Formula presented) [If one of them is 0, the corresponding ellipse degenerates into a circle around (0,0) and we can take an arbitrary (Formula presented) to make sense of (Formula presented)] The criterion is not affected by this assumption, since it relies on Ineqs. (3.21).
-
-
-
-
42
-
-
0141782139
-
-
M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki, Phys. Rev. A 62, 052310 (2000);
-
(2000)
Phys. Rev. A
, vol.62
, pp. 52310
-
-
Lewenstein, M.1
Kraus, B.2
Cirac, J.I.3
Horodecki, P.4
-
44
-
-
85037234408
-
-
the case (Formula presented) the borders of the ellipses either do not intersect at all or coincide. In both cases we have to look for solutions among the remaining seven candidates
-
In the case (Formula presented) the borders of the ellipses either do not intersect at all or coincide. In both cases we have to look for solutions among the remaining seven candidates.
-
-
-
|