메뉴 건너뛰기




Volumn 1122, Issue , 1996, Pages 91-98

Checking the p-adic stark conjecture when p is archimedean

Author keywords

[No Author keywords available]

Indexed keywords

NUMBER THEORY;

EID: 84864382983     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-61581-4_44     Document Type: Conference Paper
Times cited : (10)

References (8)
  • 1
    • 84974028808 scopus 로고
    • Class numbers and unit signatures
    • Armitage, J.V., Fröhlich, A.: Class numbers and unit signatures. Mathematika 14 (1967) 94-98
    • (1967) Mathematika , vol.14 , pp. 94-98
    • Armitage, J.V.1    Fröhlich, A.2
  • 3
    • 84966252289 scopus 로고
    • On totally real cubic fields
    • Ennola, V., Turunen, R.: On totally real cubic fields. Math. Comp., 44, no. 170 (1985) 495-518
    • (1985) Math. Comp , vol.44 , Issue.170 , pp. 495-518
    • Ennola, V.1    Turunen, R.2
  • 4
    • 0007285689 scopus 로고
    • On the values of abelian L-series at s = 0
    • Gross, B.: On the values of abelian L-series at s = 0. J. Fac. Sci. Univ. Tokyo, Sect. IA 35 (1988) 177-197
    • (1988) J. Fac. Sci. Univ. Tokyo, Sect. IA , vol.35 , pp. 177-197
    • Gross, B.1
  • 5
    • 0037526160 scopus 로고
    • The refined p-adic abelian Stark conjecture in function fields. Invent
    • Hayes, D.: The refined p-adic abelian Stark conjecture in function fields. Invent. Math. 94 (1989) 505-527
    • (1989) Math , vol.94 , pp. 505-527
    • Hayes, D.1
  • 6
    • 0002487171 scopus 로고
    • Report on p-adic L-functions over totally real fields
    • Ribet, K.: Report on p-adic L-functions over totally real fields. Astérisque 61 (1979) 177-192
    • (1979) Astérisque , vol.61 , pp. 177-192
    • Ribet, K.1
  • 7
    • 49149146397 scopus 로고
    • L-functions at s = 1, IV. First derivatives at s = 0
    • Stark, H.: L-functions at s = 1, IV. First derivatives at s = 0. Advances in Math. 35 (1980) 197-235
    • (1980) Advances in Math , vol.35 , pp. 197-235
    • Stark, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.