메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1120-1131

Efficient threshold monitoring for distributed probabilistic data

Author keywords

[No Author keywords available]

Indexed keywords

BASELINE METHODS; COMMUNICATION COST; COMPREHENSIVE STUDIES; DETERMINISTIC DATA; DISTRIBUTED DATA; EXPERIMENTAL EVALUATION; LARGE DATASETS; MULTIPLE SOURCE; PROBABILISTIC DATA; PROBABILITY THRESHOLD; RUNNING TIME; SCIENTIFIC INSTITUTES; SENSOR FIELDS; USER-SPECIFIED CONSTRAINTS;

EID: 84864192454     PISSN: 10844627     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDE.2012.34     Document Type: Conference Paper
Times cited : (19)

References (35)
  • 2
    • 1142291577 scopus 로고    scopus 로고
    • Evaluating probabilistic queries over imprecise data
    • R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries over imprecise data. In SIGMOD, 2003.
    • (2003) SIGMOD
    • Cheng, R.1    Kalashnikov, D.2    Prabhakar, S.3
  • 3
    • 84953345798 scopus 로고    scopus 로고
    • Efficient indexing methods for probabilistic threshold queries over uncertain data
    • R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter. Efficient indexing methods for probabilistic threshold queries over uncertain data. In VLDB, 2004.
    • (2004) VLDB
    • Cheng, R.1    Xia, Y.2    Prabhakar, S.3    Shah, R.4    Vitter, J.S.5
  • 4
    • 58449136645 scopus 로고    scopus 로고
    • Algorithms for distributed functional monitoring
    • G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional monitoring. In SODA, 2008.
    • (2008) SODA
    • Cormode, G.1    Muthukrishnan, S.2    Yi, K.3
  • 5
    • 84938961099 scopus 로고    scopus 로고
    • Efficient query evaluation on probabilistic databases
    • N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In VLDB, 2004.
    • (2004) VLDB
    • Dalvi, N.1    Suciu, D.2
  • 6
    • 33745662761 scopus 로고    scopus 로고
    • Using probabilistic models for data management in acquisitional environments
    • A. Deshpande, C. Guestrin, and S. Madden. Using probabilistic models for data management in acquisitional environments. In CIDR, 2005.
    • (2005) CIDR
    • Deshpande, A.1    Guestrin, C.2    Madden, S.3
  • 8
    • 85011051649 scopus 로고    scopus 로고
    • Data integration with uncertainty
    • X. Dong, A. Y. Halevy, and C. Yu. Data integration with uncertainty. In VLDB, 2007.
    • (2007) VLDB
    • Dong, X.1    Halevy, A.Y.2    Yu, C.3
  • 9
    • 79957794588 scopus 로고    scopus 로고
    • Monte carlo query processing of uncertain multidimensional array data
    • T. Ge, D. Grabiner, and S. B. Zdonik. Monte carlo query processing of uncertain multidimensional array data. In ICDE, 2011.
    • (2011) ICDE
    • Ge, T.1    Grabiner, D.2    Zdonik, S.B.3
  • 10
    • 49549091727 scopus 로고    scopus 로고
    • Using data mining to estimate missing sensor data
    • L. Gruenwald, H. Chok, and M. Aboukhamis. Using data mining to estimate missing sensor data. In ICDMW, 2007.
    • (2007) ICDMW
    • Gruenwald, L.1    Chok, H.2    Aboukhamis, M.3
  • 11
    • 67651207502 scopus 로고    scopus 로고
    • Continuously monitoring top-k uncertain data streams: A probabilistic threshold method
    • M. Hua and J. Pei. Continuously monitoring top-k uncertain data streams: a probabilistic threshold method. DPD, 26(1):29-65, 2009.
    • (2009) DPD , vol.26 , Issue.1 , pp. 29-65
    • Hua, M.1    Pei, J.2
  • 12
    • 34848844062 scopus 로고    scopus 로고
    • Communication-efficient tracking of distributed cumulative triggers
    • L. Huang, M. Garofalakis, A. D. Joseph, and N. Taft. Communication- efficient tracking of distributed cumulative triggers. In ICDCS, 2007.
    • (2007) ICDCS
    • Huang, L.1    Garofalakis, M.2    Joseph, A.D.3    Taft, N.4
  • 14
    • 84969256729 scopus 로고    scopus 로고
    • Efficient aggregation algorithms for probabilistic data
    • T. S. Jayram, S. Kale, and E. Vee. Efficient aggregation algorithms for probabilistic data. In SODA, 2007.
    • (2007) SODA
    • Jayram, T.S.1    Kale, S.2    Vee, E.3
  • 15
    • 35448934923 scopus 로고    scopus 로고
    • Estimating statistical aggregates on probabilistic data streams
    • T. S. Jayram, A. McGregor, S. Muthukrishnan, and E. Vee. Estimating statistical aggregates on probabilistic data streams. In PODS, 2007.
    • (2007) PODS
    • Jayram, T.S.1    McGregor, A.2    Muthukrishnan, S.3    Vee, E.4
  • 16
    • 52649176373 scopus 로고    scopus 로고
    • Efficient constraint monitoring using adaptive thresholds
    • S. Jeyashanker, S. Kashyap, R. Rastogi, and P. Shukla. Efficient constraint monitoring using adaptive thresholds. In ICDE, 2008.
    • (2008) ICDE
    • Jeyashanker, S.1    Kashyap, S.2    Rastogi, R.3    Shukla, P.4
  • 17
    • 84859174486 scopus 로고    scopus 로고
    • Sliding-window top-k queries on uncertain streams
    • C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin. Sliding-window top-k queries on uncertain streams. In VLDB, 2008.
    • (2008) VLDB
    • Jin, C.1    Yi, K.2    Chen, L.3    Yu, J.X.4    Lin, X.5
  • 18
    • 52649107508 scopus 로고    scopus 로고
    • Online filtering, smoothing and probabilistic modeling of streaming data
    • B. Kanagal and A. Deshpande. Online filtering, smoothing and probabilistic modeling of streaming data. In ICDE, 2008.
    • (2008) ICDE
    • Kanagal, B.1    Deshpande, A.2
  • 19
    • 34250622521 scopus 로고    scopus 로고
    • Communication efficient distributed monitoring of thresholded count
    • R. Keralapura, G. Cormode, and J. Ramamirtham. Communication efficient distributed monitoring of thresholded count. In SIGMOD, 2006.
    • (2006) SIGMOD
    • Keralapura, R.1    Cormode, G.2    Ramamirtham, J.3
  • 20
    • 70849110773 scopus 로고    scopus 로고
    • Ranking distributed probabilistic data
    • F. Li, K. Yi, and J. Jestes. Ranking distributed probabilistic data. In SIGMOD, 2009.
    • (2009) SIGMOD
    • Li, F.1    Yi, K.2    Jestes, J.3
  • 22
    • 79959537069 scopus 로고    scopus 로고
    • Making aggregation work in uncertain and probabilistic databases
    • R. Murthy, R. Ikeda, and J. Widom. Making aggregation work in uncertain and probabilistic databases. TKDE, 23(8):1261-1273, 2011.
    • (2011) TKDE , vol.23 , Issue.8 , pp. 1261-1273
    • Murthy, R.1    Ikeda, R.2    Widom, J.3
  • 23
    • 1142291592 scopus 로고    scopus 로고
    • Adaptive filters for continuous queries over distributed data streams
    • C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed data streams. In SIGMOD, 2003.
    • (2003) SIGMOD
    • Olston, C.1    Jiang, J.2    Widom, J.3
  • 24
    • 77954731172 scopus 로고    scopus 로고
    • Evaluation of probabilistic threshold queries in MCDB
    • L. Perez, S. Arumugam, and C. Jermaine. Evaluation of probabilistic threshold queries in MCDB. In SIGMOD, 2010.
    • (2010) SIGMOD
    • Perez, L.1    Arumugam, S.2    Jermaine, C.3
  • 25
    • 77954731499 scopus 로고    scopus 로고
    • Threshold query optimization for uncertain data
    • Y. Qi, R. Jain, S. Singh, and S. Prabhakar. Threshold query optimization for uncertain data. In SIGMOD, 2010.
    • (2010) SIGMOD
    • Qi, Y.1    Jain, R.2    Singh, S.3    Prabhakar, S.4
  • 26
    • 29844449830 scopus 로고    scopus 로고
    • Aggregate operators in probabilistic databases
    • R. Ross, V. S. Subrahmanian, and J. Grant. Aggregate operators in probabilistic databases. J. ACM, 52(1):54-101, 2005.
    • (2005) J. ACM , vol.52 , Issue.1 , pp. 54-101
    • Ross, R.1    Subrahmanian, V.S.2    Grant, J.3
  • 28
    • 70349843819 scopus 로고    scopus 로고
    • Representing uncertain data: Models, properties, and algorithms
    • A. D. Sarma, O. Benjelloun, A. Halevy, S. Nabar, and J. Widom. Representing uncertain data: models, properties, and algorithms. The VLDB Journal, 18(5):989-1019, 2009.
    • (2009) The VLDB Journal , vol.18 , Issue.5 , pp. 989-1019
    • Sarma, A.D.1    Benjelloun, O.2    Halevy, A.3    Nabar, S.4    Widom, J.5
  • 29
    • 34250689976 scopus 로고    scopus 로고
    • A geometric approach to monitoring threshold functions over distributed data streams
    • I. Sharfman, A. Schuster, and D. Keren. A geometric approach to monitoring threshold functions over distributed data streams. In SIGMOD, 2006.
    • (2006) SIGMOD
    • Sharfman, I.1    Schuster, A.2    Keren, D.3
  • 30
    • 51149112283 scopus 로고    scopus 로고
    • Probabilistic top-k and ranking-aggregate queries
    • M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Probabilistic top-k and ranking-aggregate queries. TODS, 33(3):1-54, 2008.
    • (2008) TODS , vol.33 , Issue.3 , pp. 1-54
    • Soliman, M.A.1    Ilyas, I.F.2    Chang, K.C.-C.3
  • 32
    • 84859328491 scopus 로고    scopus 로고
    • Conditioning and aggregating uncertain data streams: Going beyond expectations
    • T. T. L. Tran, A. McGregor, Y. Diao, L. Peng, and A. Liu. Conditioning and aggregating uncertain data streams: Going beyond expectations. PVLDB, 3(1):1302-1313, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 1302-1313
    • Tran, T.T.L.1    McGregor, A.2    Diao, Y.3    Peng, L.4    Liu, A.5
  • 33
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. The. of Prob. App., 16:264-280, 1971.
    • (1971) The. of Prob. App. , vol.16 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2
  • 34
    • 84864240018 scopus 로고    scopus 로고
    • Distributed frequent items detection on uncertain data
    • S. Wang, G. Wang, and J. Chen. Distributed frequent items detection on uncertain data. In ADMA, 2010.
    • (2010) ADMA
    • Wang, S.1    Wang, G.2    Chen, J.3
  • 35
    • 48649086706 scopus 로고    scopus 로고
    • Real-time monitoring of uncertain data streams using probabilistic similarity
    • H. Woo and A. K. Mok. Real-time monitoring of uncertain data streams using probabilistic similarity. In RTSS, 2007.
    • (2007) RTSS
    • Woo, H.1    Mok, A.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.