메뉴 건너뛰기




Volumn 15, Issue 3, 2012, Pages 383-396

Application of ANFIS for analytical modeling of tensile strength of Functionally Graded Steels

Author keywords

ANFIS; Austenitic FGS; Chemical concentration profile; ESR; Ferritic FGS; Microhardness; Tensile strength

Indexed keywords

ADAPTIVE NETWORK BASED FUZZY INFERENCE SYSTEM; ANFIS; ANFIS MODEL; AUSTENITIC; AUSTENITIC FGS; CHEMICAL COMPOSITIONS; CHEMICAL CONCENTRATION PROFILES; EXPERIMENTAL DATA; FERRITIC FGS; FUNCTIONALLY GRADED; GRADED LAYERS; INPUT PARAMETER; PLAIN CARBON STEELS; RULE OF MIXTURE; SPOT WELDED; VICKERS MICROHARDNESS;

EID: 84864185287     PISSN: 15161439     EISSN: None     Source Type: Journal    
DOI: 10.1590/S1516-14392012005000038     Document Type: Article
Times cited : (7)

References (51)
  • 1
    • 0035304158 scopus 로고    scopus 로고
    • An elasticity solution for functionally graded beams
    • DOI 10.1016/S0266-3538(01)00007-0, PII S0266353801000070
    • Sankar BV. An elasticity solution for functionally graded beams. Composites Science and Technology 2001; 61:689-696. http://dx.doi.org/10.1016/ S0266-3538(01)00007-0 (Pubitemid 32418288)
    • (2001) Composites Science and Technology , vol.61 , Issue.5 , pp. 689-696
    • Sankar, B.V.1
  • 2
    • 0038265528 scopus 로고    scopus 로고
    • Cohesive fracture modeling of elastic-plastic crack growth in functionally graded materials
    • DOI 10.1016/S0013-7944(03)00130-9
    • Jin ZH, Paulino GH and Dodds Junior RH. Cohesive fracture modeling of elastic-plastic crack growth in functionally graded materials. Engineering Fracture Mechanics 2003; 70:1885-1912. http://dx.doi.org/10.1016/S0013-7944(03) 00130-9 (Pubitemid 36837670)
    • (2003) Engineering Fracture Mechanics , vol.70 , Issue.14 , pp. 1885-1912
    • Jin, Z.1    Paulino, G.H.2    Dodds Jr., R.H.3
  • 3
    • 0032654056 scopus 로고    scopus 로고
    • Fracture testing and analysis of a layered functionally graded ti/tib beam in 3-point bending
    • Carpenter RD, Liang WW, Paulino GH, Gibeling JC and Munir ZA. Fracture Testing and Analysis of a Layered Functionally Graded Ti/TiB Beam in 3-Point Bending. Materials Science Forum.1999; 308-311:837-842. http://dx.doi.org/10. 4028/www.scientific.net/MSF.308-311.837
    • (1999) Materials Science Forum , vol.308-311 , pp. 837-842
    • Carpenter, R.D.1    Liang, W.W.2    Paulino, G.H.3    Gibeling, J.C.4    Munir, Z.A.5
  • 4
    • 36449005308 scopus 로고
    • Finite element analysis of thermal residual stresses at graded ceramic-metal 394 Materials Research interfaces. Part I. Model description and geometrical effects
    • Williamson RL, Rabin BH and Drake JT. Finite element analysis of thermal residual stresses at graded ceramic-metal 394 Materials Research interfaces. Part I. Model description and geometrical effects. Journal of Applied Physics.1993; 74:1310-1320. http://dx.doi.org/10.1063/1.354910
    • (1993) Journal of Applied Physics , vol.74 , pp. 1310-1320
    • Williamson, R.L.1    Rabin, B.H.2    Drake, J.T.3
  • 5
    • 58149208629 scopus 로고
    • Elastoplastic analysis of thermal cycling: Layered materials with compositional gradientes
    • Giannakopoulos AE, Suresh S, Finot M and Olsson M. Elastoplastic analysis of thermal cycling: layered materials with compositional gradientes. Acta Metallurgica et Materialia.1995; 43:1335-1354. http://dx.doi.org/10.1016/0956- 7151(94)00360-T
    • (1995) Acta Metallurgica et Materialia , vol.43 , pp. 1335-1354
    • Giannakopoulos, A.E.1    Suresh, S.2    Finot, M.3    Olsson, M.4
  • 6
    • 0033897288 scopus 로고    scopus 로고
    • Yield stress gradient effect in inhomogeneous materials
    • Kolednik O. The yield stress gradient effect in inhomogeneous materials. International Journal of Solids and Structures.2000; 37(5):781-808. http://dx.doi.org/10.1016/S0020-7683(99)00060-8 (Pubitemid 30506041)
    • (2000) International Journal of Solids and Structures , vol.37 , Issue.5 , pp. 781-808
    • Kolednik, O.1
  • 7
    • 33644530057 scopus 로고    scopus 로고
    • Transformation characteristics of functionally graded steels produced by electroslag remelting
    • Aghazadeh Mohandesi J and Shahosseinie MH. Transformation Characteristics of Functionally Graded Steels Produced by Electroslag Remelting. Metallurgical and Materials Transactions A.2005; 36A:3471-3476.
    • (2005) Metallurgical and Materials Transactions A , vol.36 A , pp. 3471-3476
    • Aghazadeh, M.J.1    Shahosseinie, M.H.2
  • 9
    • 77958023538 scopus 로고    scopus 로고
    • Modelling impact resistance of functionally graded steels with crack divider configuration
    • Nazari A and Aghazadeh Mohandesi J. Modelling impact resistance of functionally graded steels with crack divider configuration. Materials Science and Technology.2010; 26:1377-1383. http://dx.doi.org/10.1179/174328409X405652
    • (2010) Materials Science and Technology , vol.26 , pp. 1377-1383
    • Nazari, A.1    Aghazadeh, M.J.2
  • 10
    • 72649094319 scopus 로고    scopus 로고
    • Impact energy of functionally graded steels with crack divider configuration
    • Nazari A and Aghazadeh Mohandesi J. Impact Energy of Functionally Graded Steels with Crack Divider Configuration. Materials Science and Technology.2009; 25(6):847-852.
    • (2009) Materials Science and Technology , vol.25 , Issue.6 , pp. 847-852
    • Nazari, A.1    Aghazadeh, M.J.2
  • 11
    • 84859153446 scopus 로고    scopus 로고
    • Modeling impact energy of functionally graded steels in crack divider configuration using modified stress-strain curve data
    • Nazari A, Aghazadeh Mohandesi J and Riahi S. Modeling Impact Energy of Functionally Graded Steels in Crack Divider Configuration Using Modified Stress-Strain Curve Data. International Journal of Damage Mechanics.2010; 21(1):27-50. http://dx.doi.org/10.1177/1056789510397073
    • (2010) International Journal of Damage Mechanics , vol.21 , Issue.1 , pp. 27-50
    • Nazari, A.1    Aghazadeh, M.J.2    Riahi, S.3
  • 12
    • 78650680973 scopus 로고    scopus 로고
    • Simulation of impact energy in functionally graded steels
    • Nazari A, Aghazadeh Mohandesi J, Hamid Vishkasogheh M and Abedi M. Simulation of impact energy in functionally graded steels. Computational Materials Science.2011; 50:1187-1196. http://dx.doi.org/10.1016/j.commatsci. 2010.11.019
    • (2011) Computational Materials Science , vol.50 , pp. 1187-1196
    • Nazari, A.1    Aghazadeh, M.J.2    Hamid, V.M.3    Abedi, M.4
  • 13
    • 80052089008 scopus 로고    scopus 로고
    • Impact energy of functionally graded steels in crack arrester configuration
    • Nazari A and Aghazadeh Mohandesi J. Impact Energy of Functionally Graded Steels in Crack Arrester Configuration. Journal of Materials Engineering and Performance.2010; 19:1058-1064. http://dx.doi.org/10.1007/s11665-009-9578-4
    • (2010) Journal of Materials Engineering and Performance , vol.19 , pp. 1058-1064
    • Nazari, A.1    Aghazadeh, M.J.2
  • 14
    • 79954417610 scopus 로고    scopus 로고
    • Modeling ductile to brittle transition temperature of functionally graded steels by artificial neural networks
    • Nazari A and Milani AA. Modeling ductile to brittle transition temperature of functionally graded steels by artificial neural networks. Computational Materials Science.2011; 50:2028-2037. http://dx.doi.org/10.1016/j. commatsci.2011.02.003
    • (2011) Computational Materials Science , vol.50 , pp. 2028-2037
    • Nazari, A.1    Milani, A.A.2
  • 15
    • 84859401630 scopus 로고    scopus 로고
    • Ductile to brittle transition temperature of functionally graded steels
    • Nazari A and Milani AA. Ductile to Brittle Transition Temperature of Functionally Graded Steels. International Journal of Damage Mechanics.2010; 21(1). http://dx.doi.org/10.1177/1056789511398270
    • (2010) International Journal of Damage Mechanics , vol.21 , Issue.1
    • Nazari, A.1    Milani, A.A.2
  • 16
    • 79960379055 scopus 로고    scopus 로고
    • Modeling ductile-to-brittle transition temperature of functionally graded steels by gene expression programming
    • Nazari A and Milani AA. Modeling Ductile-to-Brittle Transition Temperature of Functionally Graded Steels by Gene Expression Programming. International Journal of Damage Mechanics.2011; http://dx.doi.org/10.1177/ 1056789511406561
    • (2011) International Journal of Damage Mechanics
    • Nazari, A.1    Milani, A.A.2
  • 17
    • 79952283281 scopus 로고    scopus 로고
    • Ductile to brittle transition temperature of functionally graded steels with crack arrester configuration
    • Nazari A and Milani AA. Ductile to brittle transition temperature of functionally graded steels with crack arrester configuration. Materials Science and Engineering A.2011; 528:3854-3859. http://dx.doi.org/10.1016/j.msea.2011.01. 105
    • (2011) Materials Science and Engineering A , vol.528 , pp. 3854-3859
    • Nazari, A.1    Milani, A.A.2
  • 18
    • 79960843033 scopus 로고    scopus 로고
    • Modeling ductile to brittle transition temperature of functionally graded steels by fuzzy logic
    • Nazari A and Milani AA. Modeling ductile to brittle transition temperature of functionally graded steels by fuzzy logic. Journal of Materials Science.2011; 46:6007-6017. http://dx.doi.org/10.1007/s10853-011-5563-z
    • (2011) Journal of Materials Science , vol.46 , pp. 6007-6017
    • Nazari, A.1    Milani, A.A.2
  • 19
    • 79960356906 scopus 로고    scopus 로고
    • Modified modeling fracture toughness of functionally graded steels in crack divider configuration
    • Nazari A, Aghazadeh Mohandesi J and Riahi S. Modified Modeling Fracture Toughness of Functionally Graded Steels in Crack Divider Configuration. International Journal of Damage Mechanics.2011; 20:811-831. http://dx.doi.org/ 10.1177/1056789510382851
    • (2011) International Journal of Damage Mechanics , vol.20 , pp. 811-831
    • Nazari, A.1    Aghazadeh, M.J.2    Riahi, S.3
  • 22
    • 79151471253 scopus 로고    scopus 로고
    • Modeling fracture toughness of functionally graded steels in crack arrest configuration
    • Nazari A, Aghazadeh Mohandesi J and Riahi S. Modeling fracture toughness of functionally graded steels in crack arrester configuration. Computational Materials Science.2011; 50:1578-1586. http://dx.doi.org/10.1016/j.commatsci. 2010.12.019
    • (2011) Computational Materials Science , vol.50 , pp. 1578-1586
    • Nazari, A.1    Aghazadeh, M.J.2    Riahi, S.3
  • 23
    • 79151475805 scopus 로고    scopus 로고
    • Modeling tensile strength of oblique layer functionally graded austenitic steel
    • Nazari A and Aghazadeh Mohandesi J. Modeling tensile strength of oblique layer functionally graded austenitic steel. Computational Materials Science.2011; 50:1425-1431. http://dx.doi.org/10.1016/j.commatsci.2010.11.029
    • (2011) Computational Materials Science , vol.50 , pp. 1425-1431
    • Nazari, A.1    Aghazadeh, M.J.2
  • 24
    • 77957556772 scopus 로고    scopus 로고
    • Effect of layer angle on tensile behavior of oblique layer functionally graded steels
    • Nazari A and Riahi S. Effect of layer angle on tensile behavior of oblique layer functionally graded steels. Turkish Journal of Engineering & Environmental Sciences.2010; 34:17-24.
    • (2010) Turkish Journal of Engineering & Environmental Sciences , vol.34 , pp. 17-24
    • Nazari, A.1    Riahi, S.2
  • 25
    • 79952005788 scopus 로고    scopus 로고
    • Microhardness profile prediction of a graded steel by strain gradient plasticity theory
    • Nazari A, Aghazadeh Mohandesi J and Tavareh S. Microhardness profile prediction of a graded steel by strain gradient plasticity theory. Computational Materials Science.2011; 50:1781-1784. http://dx.doi.org/10.1016/j.commatsci. 2011.01.014
    • (2011) Computational Materials Science , vol.50 , pp. 1781-1784
    • Nazari, A.1    Aghazadeh, M.J.2    Tavareh, S.3
  • 26
    • 79952009393 scopus 로고    scopus 로고
    • Modeling tensile strength of austenitic graded steel based on the strain gradient plasticity theory
    • Nazari A, Aghazadeh Mohandesi J and Tavareh S. Modeling tensile strength of austenitic graded steel based on the strain gradient plasticity theory Computational Materials Science.2011; 50:1791-1794. http://dx.doi.org/10.1016/j. commatsci.2011.01.016
    • (2011) Computational Materials Science , vol.50 , pp. 1791-1794
    • Nazari, A.1    Aghazadeh, M.J.2    Tavareh, S.3
  • 27
    • 79960343986 scopus 로고    scopus 로고
    • Prediction charpy impact energy of bcc and fcc functionally graded steels in crack divider configuration by strain gradient plasticity theory
    • Nazari A and Mojtahed Najafi SM. Prediction Charpy impact energy of bcc and fcc functionally graded steels in crack divider configuration by strain gradient plasticity theory. Computational Materials Science.2011; 50:3178-3183. http://dx.doi.org/10.1016/j.commatsci.2011.05.047
    • (2011) Computational Materials Science , vol.50 , pp. 3178-3183
    • Nazari, A.1    Mojtahed Najafi, S.M.2
  • 28
    • 79960354732 scopus 로고    scopus 로고
    • Prediction impact behavior of functionally graded steel by strain gradient plasticity theory
    • Nazari A and Mojtahed Najafi SM. Prediction impact behavior of functionally graded steel by strain gradient plasticity theory. Computational Materials Science.2011; 50:3218-3223. http://dx.doi.org/10.1016/j.commatsci. 2011.06.004
    • (2011) Computational Materials Science , vol.50 , pp. 3218-3223
    • Nazari, A.1    Mojtahed Najafi, S.M.2
  • 29
    • 80052032553 scopus 로고    scopus 로고
    • Modeling charpy impact energy of functionally graded steel based on the strain gradient plasticity theory and modified stress-strain curve data
    • Nazari A. Modeling Charpy impact energy of functionally graded steel based on the strain gradient plasticity theory and modified stress-strain curve data. Computational Materials Science.2011; 50(12):3350-3357. http://dx.doi.org/10.1016/j.commatsci.2011.06.029
    • (2011) Computational Materials Science , vol.50 , Issue.12 , pp. 3350-3357
    • Nazari, A.1
  • 30
    • 80052035743 scopus 로고    scopus 로고
    • Application of strain gradient plasticity theory to model charpy impact energy of functionally graded steels
    • Nazari A. Application of strain gradient plasticity theory to model Charpy impact energy of functionally graded steels. Computational Materials Science.2011; 50(12):3410-3416. http://dx.doi.org/10.1016/j.commatsci.2011.06. 039
    • (2011) Computational Materials Science , vol.50 , Issue.12 , pp. 3410-3416
    • Nazari, A.1
  • 31
    • 80052036214 scopus 로고    scopus 로고
    • Strain gradient plasticity theory to predict the input data for modeling charpy impact energy in functionally graded steels
    • Nazari A. Strain gradient plasticity theory to predict the input data for modeling Charpy impact energy in functionally graded steels. Computational Materials Science.2011; 50(12): 3442-3449. http://dx.doi.org/10.1016/j. commatsci.2011.07.007
    • (2011) Computational Materials Science , vol.50 , Issue.12 , pp. 3442-3449
    • Nazari, A.1
  • 32
    • 80052024293 scopus 로고    scopus 로고
    • Simulation of impact energy in functionally graded steels by mechanism-based strain gradient plasticity theory
    • Nazari A. Simulation of impact energy in functionally graded steels by mechanism-based strain gradient plasticity theory. Computational Materials Science.2012; 51(1):13-19. http://dx.doi.org/10.1016/j.commatsci.2011.07.010
    • (2012) Computational Materials Science , vol.51 , Issue.1 , pp. 13-19
    • Nazari, A.1
  • 33
    • 80052026217 scopus 로고    scopus 로고
    • Simulation charpy impact energy of functionally graded steels by modified stress-strain curve through mechanism-based strain gradient plasticity theory
    • Nazari A. Simulation Charpy impact energy of functionally graded steels by modified stress-strain curve through mechanism-based strain gradient plasticity theory. Computational Materials Science.2012; 51(1): 225-232. http://dx.doi.org/10.1016/j.commatsci.2011.07.027
    • (2012) Computational Materials Science , vol.51 , Issue.1 , pp. 225-232
    • Nazari, A.1
  • 34
    • 80052028900 scopus 로고    scopus 로고
    • Application of strain gradient plasticity theory to model charpy impact energy of functionally graded steels using modified stress-strain curve data
    • Nazari A. Application of strain gradient plasticity theory to model Charpy impact energy of functionally graded steels using modified stress-strain curve data. Computational Materials Science.2012; 51(1):281-289. http://dx.doi.org/10.1016/j.commatsci.2011.07.057
    • (2012) Computational Materials Science , vol.51 , Issue.1 , pp. 281-289
    • Nazari, A.1
  • 35
    • 79960347487 scopus 로고    scopus 로고
    • Modeling fracture toughness of ferritic and austenitic functionally graded steel based on the strain gradient plasticity theory
    • Nazari A. Modeling fracture toughness of ferritic and austenitic functionally graded steel based on the strain gradient plasticity theory. Computational Materials Science.2011; 50:3238-3244. http://dx.doi.org/10.1016/j. commatsci.2011.06.008
    • (2011) Computational Materials Science , vol.50 , pp. 3238-3244
    • Nazari, A.1
  • 36
    • 80052038515 scopus 로고    scopus 로고
    • Strain gradient plasticity theory for modeling JIC of functionally graded steels
    • Nazari A. Strain gradient plasticity theory for modeling JIC of functionally graded steels. Computational Materials Science.2011; 50(12): 3403-3409. http://dx.doi.org/10.1016/j.commatsci.2011.06.038
    • (2011) Computational Materials Science , vol.50 , Issue.12 , pp. 3403-3409
    • Nazari, A.1
  • 37
    • 78650873094 scopus 로고    scopus 로고
    • Computer-aided prediction of physical and mechanical properties of high strength cementitious composite containing Cr2O3 nanoparticles
    • Nazari A and Riahi S. Computer-aided prediction of physical and mechanical properties of high strength cementitious composite containing Cr2O3 nanoparticles. Nano.2010; 5(5):301-318. http://dx.doi.org/10.1142/ S1793292010002219
    • (2010) Nano , vol.5 , Issue.5 , pp. 301-318
    • Nazari, A.1    Riahi, S.2
  • 38
    • 79951555862 scopus 로고    scopus 로고
    • Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles by artificial neural network and genetic programming
    • Nazari A and Riahi S. Prediction split tensile strength and water permeability of high strength concrete containing TiO2 nanoparticles by artificial neural network and genetic programming. Composites Part B: Engineering.2011; 42:473-488. http://dx.doi.org/10.1016/j.compositesb.2010.12. 004
    • (2011) Composites Part B: Engineering , vol.42 , pp. 473-488
    • Nazari, A.1    Riahi, S.2
  • 39
    • 79955136078 scopus 로고    scopus 로고
    • Computer-aided design of the effects of Fe2O3 nanoparticles on split tensile strength and water permeability of high strength concrete
    • Nazari A and Riahi S. Computer-aided design of the effects of Fe2O3 nanoparticles on split tensile strength and water permeability of high strength concrete. Materials and Design.2011; 32:3966-3979. http://dx.doi.org/10.1016/j. matdes.2011.01.064
    • (2011) Materials and Design , vol.32 , pp. 3966-3979
    • Nazari, A.1    Riahi, S.2
  • 40
    • 80051784827 scopus 로고    scopus 로고
    • Modeling impact resistance of aluminum-epoxy laminated composites
    • Nazari A and Didehvar N. Modeling impact resistance of aluminum-epoxy laminated composites. ANFIS.2011; 42:1912-1919.
    • (2011) ANFIS , vol.42 , pp. 1912-1919
    • Nazari, A.1    Didehvar, N.2
  • 41
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang JSR. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics.1993; 23(3):665-85. http://dx.doi.org/10.1109/21.256541
    • (1993) IEEE Transactions on Systems, Man and Cybernetics , vol.23 , Issue.3 , pp. 665-85
    • Jang, J.S.R.1
  • 42
    • 67349283336 scopus 로고    scopus 로고
    • Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic
    • Sardemir M. Predicting the compressive strength of mortars containing metakaolin by artificial neural networks and fuzzy logic. Advances in Engineering Software.2009; 40(9):920-7. http://dx.doi.org/10.1016/j.advengsoft. 2008.12.008
    • (2009) Advances in Engineering Software , vol.40 , Issue.9 , pp. 920-7
    • Sardemir, M.1
  • 43
    • 39149127603 scopus 로고    scopus 로고
    • Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic
    • DOI 10.1016/j.commatsci.2007.06.011, PII S0927025607001723
    • Topcu IB and Sardemir M. Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic. Computational Materials Science.2008; 42(1):74-82. http://dx.doi.org/10.1016/j.commatsci.2007.06.011 (Pubitemid 351253759)
    • (2008) Computational Materials Science , vol.42 , Issue.1 , pp. 74-82
    • Topcu, I.B.1    Saridemir, M.2
  • 44
    • 0029273384 scopus 로고
    • Nuro-fuzzy modeling and control
    • Jang JSR and Sun CT. Nuro-fuzzy modeling and control. Proceedings IEEE.1995;83(3). http://dx.doi.org/10.1109/5.364486
    • (1995) Proceedings IEEE , vol.83 , Issue.3
    • Jang, J.S.R.1    Sun, C.T.2
  • 45
    • 33746306540 scopus 로고    scopus 로고
    • Prediction of web crippling strength of cold-formed steel sheetings using neural networks
    • DOI 10.1016/j.jcsr.2006.01.008, PII S0143974X06000174
    • Guzelbey IH, Cevik A and Erklig A. Prediction of web crippling strength of cold-formed steel sheetings using neural Networks. Journal of Constructional Steel Research.2006; 62:962-973. http://dx.doi.org/10.1016/j.jcsr.2006.01.008 (Pubitemid 44107495)
    • (2006) Journal of Constructional Steel Research , vol.62 , Issue.10 , pp. 962-973
    • Guzelbey, I.H.1    Cevik, A.2    Erklig, A.3
  • 46
    • 33746283143 scopus 로고    scopus 로고
    • Prediction of rotation capacity of wide flange beams using neural networks
    • DOI 10.1016/j.jcsr.2006.01.003, PII S0143974X06000150
    • Guzelbey IH, Cevik A and Gögüs MT. Prediction of rotation capacity of wide flange beams using neural Networks. Journal of Constructional Steel Research.2006; 62:950-961. http://dx.doi.org/10.1016/j.jcsr.2006.01.003 (Pubitemid 44107494)
    • (2006) Journal of Constructional Steel Research , vol.62 , Issue.10 , pp. 950-961
    • Guzelbey, I.H.1    Cevik, A.2    Gogus, M.T.3
  • 47
    • 37549035095 scopus 로고    scopus 로고
    • Neural network modeling of strength enhancement for cfrp confined concrete cylinders
    • Cevik A and Guzelbey IH. Neural Network Modeling Of Strength Enhancement For Cfrp Confined Concrete Cylinders. Building & Environment.2008; 43:751-763. http://dx.doi.org/10.1016/j.buildenv.2007.01.036
    • (2008) Building & Environment , vol.43 , pp. 751-763
    • Cevik, A.1    Guzelbey, I.H.2
  • 48
    • 33846284578 scopus 로고    scopus 로고
    • A soft computing based approach for the prediction of ultimate strength of metal plates in compression
    • DOI 10.1016/j.engstruct.2006.05.005, PII S0141029606002082
    • Cevik A and Guzelbey IH. A Soft computing based approach for the prediction of ultimate strength of metal plates in compression. Engineering Structures.2007; 29(3):383-394. http://dx.doi.org/10.1016/j.engstruct.2006.05. 005 (Pubitemid 46118048)
    • (2007) Engineering Structures , vol.29 , Issue.3 , pp. 383-394
    • Cevik, A.1    Guzelbey, I.H.2
  • 49
    • 34548514681 scopus 로고    scopus 로고
    • Application of network based neuro-fuzzy system for prediction of the strength of high strength concrete
    • Ramezanianpour AA, Sobhani M and Sobhani J. Application of network based neuro-fuzzy system for prediction of the strength of high strength concrete. Amirkabir Journal of Science and Technology.2004; 5(59-C):78-93.
    • (2004) Amirkabir Journal of Science and Technology , vol.5 , Issue.59 C , pp. 78-93
    • Ramezanianpour, A.A.1    Sobhani, M.2    Sobhani, J.3
  • 51
    • 37249005831 scopus 로고    scopus 로고
    • Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic
    • DOI 10.1016/j.commatsci.2007.04.009, PII S0927025607001085
    • Topcu IB and Sardemir M. Prediction of compressive strength of concrete containing fly ash using artificial neural network and fuzzy logic. Computational Materials Science.2008; 41(3):305-11. http://dx.doi.org/10.1016/j. commatsci.2007.04.009 (Pubitemid 350267189)
    • (2008) Computational Materials Science , vol.41 , Issue.3 , pp. 305-311
    • Topcu, I.B.1    Saridemir, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.