-
2
-
-
33847348383
-
On classification with incomplete data
-
Williams, D., Liao, X. J., Xue, Y., et al. 2007. On classification with incomplete data, IEEE Transactions on Pattern Analysis and Machine Intelligence.
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
-
-
Williams, D.1
Liao, X.J.2
Xue, Y.3
-
5
-
-
31844435714
-
Incomplete-data classification using logistic regression
-
Williams, D., Liao, X., Xue, Y., et al. 2005. Incomplete-data classification using logistic regression, Proceedings of the International Conference on Machine learning.
-
(2005)
Proceedings of the International Conference on Machine Learning
-
-
Williams, D.1
Liao, X.2
Xue, Y.3
-
7
-
-
84983089737
-
Max-margin classification of incomplete data
-
Chechik, G., Heitz, G., Elidan, G., et al. 2006. Max-margin classification of incomplete data, Advances in Neural Information Processing Systems.
-
(2006)
Advances in Neural Information Processing Systems
-
-
Chechik, G.1
Heitz, G.2
Elidan, G.3
-
8
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.E., and Salakhutdinov, R.R. 2006. Reducing the dimensionality of data with neural networks. In Science.
-
(2006)
Science
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
9
-
-
50249093806
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
Larochelle, H., Erhan, D., Courville, A., Bergstra, J. and Bengio, Y. 2007. An empirical evaluation of deep architectures on problems with many factors of variation. In ICML.
-
(2007)
ICML
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
12
-
-
78650876367
-
A deep-learning model-based and data-driven hybrid architecture for image annotation
-
Wang, Z. Xia, D. Chang, E.Y. 2010. A deep-learning model-based and data-driven hybrid architecture for image annotation. In VLS-MCMR, ACM.
-
(2010)
VLS-MCMR, ACM
-
-
Wang, Z.1
Xia, D.2
Chang, E.Y.3
-
13
-
-
84855577840
-
Deep networks for image retrieval on large-scale databases
-
Hörster, E. and Lienhart, R. 2008. Deep networks for image retrieval on large-scale databases, In ACMMM.
-
(2008)
ACMMM
-
-
Hörster, E.1
Lienhart, R.2
-
15
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. 1998. Gradient-based learning applied to document recognition. In Proceedings of the IEEE.
-
(1998)
Proceedings of the IEEE
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
17
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Boser, B. E., Guyon,I. M. and Vapnik,V.N. 1992. A training algorithm for optimal margin classifiers. In COLT,.
-
(1992)
COLT
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
18
-
-
51949105316
-
Learning a nonlinear embedding by preserving class neighbourhood structure
-
Salakhutdinov, R.R., Hinton,G.E. 2007. Learning a nonlinear embedding by preserving class neighbourhood structure, In AISTATS.
-
(2007)
AISTATS
-
-
Salakhutdinov, R.R.1
Hinton, G.E.2
-
19
-
-
56449119888
-
Deep learning via semi-supervised embedding
-
Weston, J., Ratle, F., Collobert, R. 2008. Deep learning via semi-supervised embedding, In ICML.
-
(2008)
ICML
-
-
Weston, J.1
Ratle, F.2
Collobert, R.3
-
20
-
-
79958739243
-
Attention driven face recognition: A combination of spatial variant fixations and glance
-
Wang, C.X., Qing, L.Y., Miao, J., Fang, F., and Chen, X.L. 2011. Attention Driven Face Recognition: A Combination of Spatial Variant Fixations and Glance, In Proceedings of IEEE International conference on Automatic Face and Gesture Recognition.
-
(2011)
Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition
-
-
Wang, C.X.1
Qing, L.Y.2
Miao, J.3
Fang, F.4
Chen, X.L.5
-
21
-
-
1842705510
-
-
Yale face database. DOI=http://cvc.yale.edu/projects/yalefaces/yalefaces. html.
-
Yale Face Database
-
-
-
23
-
-
84864145556
-
-
IEEE OTCBVS WS Series Bench: DOE University Research Program in Robotics under grant DOE-DE-FG02-86NE37968; DOD/TACOM/NAC/ARC Program under grant R01-1344-18; FAA/NSSA grant R01-1344-48/49; Office of Naval Research under grant#N000143010022
-
IEEE OTCBVS WS Series Bench: DOE University Research Program in Robotics under grant DOE-DE-FG02-86NE37968; DOD/TACOM/NAC/ARC Program under grant R01-1344-18; FAA/NSSA grant R01-1344-48/49; Office of Naval Research under grant#N000143010022.
-
-
-
|