-
1
-
-
0034198996
-
Observable operator models for discrete stochastic time series
-
MIT Press
-
Jaeger, H. (2000). Observable operator models for discrete stochastic time series. Neural Computation, 12(6):1371-1398. MIT Press.
-
(2000)
Neural Computation
, vol.12
, Issue.6
, pp. 1371-1398
-
-
Jaeger, H.1
-
2
-
-
84898982129
-
Predictive representations of state
-
T. G. Dietterich, S. Becker and Z. Ghahramani (eds.). MIT Press
-
Littman, M., Sutton, R. S., & Singh, S. (2002). Predictive representations of state. In T. G. Dietterich, S. Becker and Z. Ghahramani (eds.), Advances In Neural Information Processing Systems 14, pp. 1555-1561. MIT Press.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 1555-1561
-
-
Littman, M.1
Sutton, R.S.2
Singh, S.3
-
3
-
-
4644328593
-
Off-policy temporal-difference learning with function approximation
-
C. E. Brodley, A. P. Danyluk (eds.). San Francisco, CA: Morgan Kaufmann
-
Precup, D., Sutton, R. S., & Dasgupta, S. (2001). Off-policy temporal-difference learning with function approximation. In C. E. Brodley, A. P. Danyluk (eds.), Proceedings of the Eighteenth International Conference on Machine Learning, pp. 417-424. San Francisco, CA: Morgan Kaufmann.
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning
, pp. 417-424
-
-
Precup, D.1
Sutton, R.S.2
Dasgupta, S.3
-
4
-
-
84880714731
-
Using predictive representations to improve generalization in reinforcement learning
-
To appear in
-
Rafols, E. J., Ring, M., Sutton, R.S., & Tanner, B. (2005). Using predictive representations to improve generalization in reinforcement learning. To appear in Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence.
-
(2005)
Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence
-
-
Rafols, E.J.1
Ring, M.2
Sutton, R.S.3
Tanner, B.4
-
6
-
-
31844457132
-
Predictive state representations: A new theory for modeling dynamical systems
-
AUAI Press
-
Singh, S., James, M. R., & Rudary, M. R. (2004). Predictive state representations: A new theory for modeling dynamical systems. In Uncertainty in Artificial Intelligence: Proceedings of the Twentieth Conference in Uncertainty in Artificial Intelligence, (pp. 512-519). AUAI Press.
-
(2004)
Uncertainty in Artificial Intelligence: Proceedings of the Twentieth Conference in Uncertainty in Artificial Intelligence
, pp. 512-519
-
-
Singh, S.1
James, M.R.2
Rudary, M.R.3
-
8
-
-
0033170372
-
Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
-
Sutton, R. S., Precup, D., Singh, S. (1999). Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112, pp. 181-211.
-
(1999)
Artificial Intelligence
, vol.112
, pp. 181-211
-
-
Sutton, R.S.1
Precup, D.2
Singh, S.3
|