메뉴 건너뛰기




Volumn 12, Issue SUPPL. 13, 2011, Pages

Exploiting heterogeneous features to improve in silico prediction of peptide status - amyloidogenic or non-amyloidogenic

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID INDICES; AMYLOID FIBRIL; AMYLOID-LIKE FIBRIL; AMYLOIDOGENIC PEPTIDES; ARTIFICIAL NEURAL NETWORK MODELS; ATOMIC COMPOSITIONS; AUTOCORRELATION FUNCTIONS; CLASSIFIER DESIGN; CORRELATION COEFFICIENT; FEATURE VECTORS; HETEROGENEOUS FEATURES; HYBRID GENETIC ALGORITHMS; IN-SILICO; INTERACTION EFFECT; MEMETIC ALGORITHMS; MOLECULAR TECHNIQUES; OPTIMAL NUMBER; OPTIMIZATION STRATEGY; PREDICTION QUALITY; PREDICTION TOOLS; PROTEIN FRAGMENTS; PROTEIN SEQUENCES; RECEIVER OPERATING CHARACTERISTICS; SENSITIVITY AND SPECIFICITY; UNDERLYING CAUSE;

EID: 84864052876     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-12-S13-S21     Document Type: Article
Times cited : (15)

References (32)
  • 1
    • 77649240855 scopus 로고    scopus 로고
    • Identifying the amylome, proteins capable of forming amyloid-like fibrils
    • 10.1073/pnas.0915166107, 2840437, 20133726
    • Goldschmidt L, Teng PK, Riek R, Eisenberg D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. PNAS 2010, 107(No. 8):3487-3492. 10.1073/pnas.0915166107, 2840437, 20133726.
    • (2010) PNAS , vol.107 , Issue.8 , pp. 3487-3492
    • Goldschmidt, L.1    Teng, P.K.2    Riek, R.3    Eisenberg, D.4
  • 2
    • 33845990277 scopus 로고    scopus 로고
    • Prediction of amyloidigenic and disordered regions in protein chains
    • 10.1371/journal.pcbi.0020177, 1761655, 17196033
    • Galzitskaya OV, Garbuzynskiy SO, Lobanov MY. Prediction of amyloidigenic and disordered regions in protein chains. PLoS Computational Biology 2006, 2(12):e177. 10.1371/journal.pcbi.0020177, 1761655, 17196033.
    • (2006) PLoS Computational Biology , vol.2 , Issue.12
    • Galzitskaya, O.V.1    Garbuzynskiy, S.O.2    Lobanov, M.Y.3
  • 3
    • 34548756136 scopus 로고    scopus 로고
    • Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential
    • 10.1093/bioinformatics/btm325, 17599928
    • Zhang Z, Chen H, Lai L. Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics 2007, 23(No. 17):2218-2225. 10.1093/bioinformatics/btm325, 17599928.
    • (2007) Bioinformatics , vol.23 , Issue.17 , pp. 2218-2225
    • Zhang, Z.1    Chen, H.2    Lai, L.3
  • 6
    • 33947517558 scopus 로고    scopus 로고
    • AGGRESCAN: a server for the prediction of " hot spots" of aggregation in polypeptides
    • 10.1186/1471-2105-8-65, 1828741, 17324296
    • Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S. AGGRESCAN: a server for the prediction of " hot spots" of aggregation in polypeptides. BMC Bioinformatics 2007, 8:65. 10.1186/1471-2105-8-65, 1828741, 17324296.
    • (2007) BMC Bioinformatics , vol.8 , pp. 65
    • Conchillo-Solé, O.1    de Groot, N.S.2    Avilés, F.X.3    Vendrell, J.4    Daura, X.5    Ventura, S.6
  • 7
    • 33645238380 scopus 로고    scopus 로고
    • The 3D profile method for identifying fibril-forming segments of proteins
    • 10.1073/pnas.0511295103, 1449648, 16537487
    • Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D. The 3D profile method for identifying fibril-forming segments of proteins. PNAS 2006, 103(No. 11):4074-4078. 10.1073/pnas.0511295103, 1449648, 16537487.
    • (2006) PNAS , vol.103 , Issue.11 , pp. 4074-4078
    • Thompson, M.J.1    Sievers, S.A.2    Karanicolas, J.3    Ivanova, M.I.4    Baker, D.5    Eisenberg, D.6
  • 8
    • 77949532822 scopus 로고    scopus 로고
    • FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence
    • 10.1093/bioinformatics/btp691, 20019059
    • Garbuzynskiy SO, Lobanov MY, Galzitskaya OV. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 2010, 26(No.3):326-332. 10.1093/bioinformatics/btp691, 20019059.
    • (2010) Bioinformatics , vol.26 , Issue.3 , pp. 326-332
    • Garbuzynskiy, S.O.1    Lobanov, M.Y.2    Galzitskaya, O.V.3
  • 9
    • 84874599916 scopus 로고    scopus 로고
    • The Pafig Server (Version 1.0)
    • The Pafig Server (Version 1.0). , http://www.mobioinfor.cn/pafig/
  • 10
    • 84864027836 scopus 로고    scopus 로고
    • An evaluation of feature selection approaches in finding amyloidogenic regions in protein sequences
    • Nair SSK, Reddy NVS, Hareesha KS. An evaluation of feature selection approaches in finding amyloidogenic regions in protein sequences. International Journal of Computer Applications 2010, 8(No.2):1-6.
    • (2010) International Journal of Computer Applications , vol.8 , Issue.2 , pp. 1-6
    • Nair, S.S.K.1    Reddy, N.V.S.2    Hareesha, K.S.3
  • 11
    • 25444463295 scopus 로고    scopus 로고
    • Feature selection and nearest centroid classification for protein mass spectrometry
    • 10.1186/1471-2105-6-68, 1274262, 15788095
    • Levner I. Feature selection and nearest centroid classification for protein mass spectrometry. BMC Bioinformatics 2005, 6:68. 10.1186/1471-2105-6-68, 1274262, 15788095.
    • (2005) BMC Bioinformatics , vol.6 , pp. 68
    • Levner, I.1
  • 12
    • 70350000602 scopus 로고    scopus 로고
    • TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative example
    • 10.1093/bioinformatics/btp503, 19692556
    • Bandyopadhyay S, Mitra R. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative example. Bioinformatics 2009, 25(No. 20):2625-2631. 10.1093/bioinformatics/btp503, 19692556.
    • (2009) Bioinformatics , vol.25 , Issue.20 , pp. 2625-2631
    • Bandyopadhyay, S.1    Mitra, R.2
  • 13
    • 33748525884 scopus 로고    scopus 로고
    • Computational models for the prediction of polypeptide aggregation propensity
    • 10.1016/j.cbpa.2006.07.009, 16880001
    • Caflisch A. Computational models for the prediction of polypeptide aggregation propensity. Current Opinion in Chemical Biology 2006, 10:437-444. 10.1016/j.cbpa.2006.07.009, 16880001.
    • (2006) Current Opinion in Chemical Biology , vol.10 , pp. 437-444
    • Caflisch, A.1
  • 15
    • 33747816816 scopus 로고    scopus 로고
    • PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence
    • 1538821, 16845018, Web Server issue
    • Li ZR, Lin HH, Han LY, Jiang L, Chen X, Chen YZ. PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Research 2006, 34(Web Server issue):W32-W37. 1538821, 16845018.
    • (2006) Nucleic Acids Research , vol.34
    • Li, Z.R.1    Lin, H.H.2    Han, L.Y.3    Jiang, L.4    Chen, X.5    Chen, Y.Z.6
  • 16
    • 0345827608 scopus 로고    scopus 로고
    • Sequence determinants of amyloid fibril formation
    • 10.1073/pnas.2634884100, 314143, 14691246
    • López de la Paz M, Serrano L. Sequence determinants of amyloid fibril formation. PNAS 2004, 101(No. 1):87-92. 10.1073/pnas.2634884100, 314143, 14691246.
    • (2004) PNAS , vol.101 , Issue.1 , pp. 87-92
    • López de la Paz, M.1    Serrano, L.2
  • 17
    • 60849089613 scopus 로고    scopus 로고
    • Prediction of amyloid fibril-forming segments based on a support vector machine
    • 10.1186/1471-2105-10-S1-S45, 2648769, 19208147
    • Tian J, Wu N, Guo J, Fan Y. Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics 2009, 10(Suppl 1):S45. 10.1186/1471-2105-10-S1-S45, 2648769, 19208147.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL. 1
    • Tian, J.1    Wu, N.2    Guo, J.3    Fan, Y.4
  • 18
    • 84874607469 scopus 로고    scopus 로고
    • UniProt Download Center
    • UniProt Download Center. , http://www.ebi.ac.uk/uniprot/database/download.html
  • 19
    • 0343621535 scopus 로고    scopus 로고
    • AAindex: amino acid index database
    • Kawashima S, Kanehisa M. AAindex: amino acid index database. Nucleic Acids Res 2008, 28(1):374.
    • (2008) Nucleic Acids Res , vol.28 , Issue.1 , pp. 374
    • Kawashima, S.1    Kanehisa, M.2
  • 20
    • 51549108091 scopus 로고    scopus 로고
    • APDbase: Amino acid Physicochemical properties Database
    • 10.6026/97320630001002, 1891621, 17597840
    • Mathura VS, Kolippakkam D. APDbase: Amino acid Physicochemical properties Database. Bioinformation 2005, 1(1):2-4. 10.6026/97320630001002, 1891621, 17597840.
    • (2005) Bioinformation , vol.1 , Issue.1 , pp. 2-4
    • Mathura, V.S.1    Kolippakkam, D.2
  • 21
    • 84874640671 scopus 로고    scopus 로고
    • Amino acid Physical-chemical property Database
    • Amino acid Physical-chemical property Database. , http://www.rfdn.org/bioinfo/APDbase.php
  • 22
    • 84874582051 scopus 로고    scopus 로고
    • ProtScale
    • ProtScale. , http://www.expasy.org/tools/protscale.html
  • 23
    • 60949104277 scopus 로고    scopus 로고
    • Predicting disordered regions in proteins using profiles of amino acids indices
    • 10.1186/1471-2105-10-S1-S42, 2648739, 19208144
    • Han P, Zhang X, Feng ZP. Predicting disordered regions in proteins using profiles of amino acids indices. BMC Bioinformatics 2009, 10(Suppl 1):S42. 10.1186/1471-2105-10-S1-S42, 2648739, 19208144.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL. 1
    • Han, P.1    Zhang, X.2    Feng, Z.P.3
  • 24
    • 53749104774 scopus 로고    scopus 로고
    • Computational prediction of human proteins that can be secreted into the bloodstream
    • Cui J, Liu Q, Puett D, Xu Y. Computational prediction of human proteins that can be secreted into the bloodstream. Systems Biology 2008, 24(No. 20):2370-2375.
    • (2008) Systems Biology , vol.24 , Issue.20 , pp. 2370-2375
    • Cui, J.1    Liu, Q.2    Puett, D.3    Xu, Y.4
  • 25
    • 84960972533 scopus 로고    scopus 로고
    • Data mining - concepts and techniques
    • II
    • Han J, Kamber M. Data mining - concepts and techniques. Elsevier 2008, II.
    • (2008) Elsevier
    • Han, J.1    Kamber, M.2
  • 26
    • 74649087307 scopus 로고    scopus 로고
    • A novel feature selection approach for biomedical data classification
    • 10.1016/j.jbi.2009.07.008, 19647098
    • Peng Y, Wu Z, Jiang J. A novel feature selection approach for biomedical data classification. Journal of Biomedical Informatics 2010, 43:15-23. 10.1016/j.jbi.2009.07.008, 19647098.
    • (2010) Journal of Biomedical Informatics , vol.43 , pp. 15-23
    • Peng, Y.1    Wu, Z.2    Jiang, J.3
  • 27
    • 34548458988 scopus 로고    scopus 로고
    • ProLoc: Prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features
    • 10.1016/j.biosystems.2007.01.001, 17291684
    • Huang WL, Tung CW, Huang HL, Hwang SF, Ho SY. ProLoc: Prediction of protein subnuclear localization using SVM with automatic selection from physicochemical composition features. BioSystems 2007, 90:573-581. 10.1016/j.biosystems.2007.01.001, 17291684.
    • (2007) BioSystems , vol.90 , pp. 573-581
    • Huang, W.L.1    Tung, C.W.2    Huang, H.L.3    Hwang, S.F.4    Ho, S.Y.5
  • 28
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • 10.1093/bioinformatics/btm344, 17720704
    • Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23(No. 19):2507-2517. 10.1093/bioinformatics/btm344, 17720704.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 29
    • 84871670892 scopus 로고    scopus 로고
    • LIBSVM -- A Library for Support Vector Machines
    • LIBSVM -- A Library for Support Vector Machines. , http://www.csie.ntu.edu.tw/~cjlin/libsvm/
  • 30
    • 84864067641 scopus 로고    scopus 로고
    • Memetic algorithms: a short introduction; new ideas in optimization
    • Moscato P. Memetic algorithms: a short introduction; new ideas in optimization. McGraw-Hill Ltd. UK 1999,
    • (1999) McGraw-Hill Ltd. UK
    • Moscato, P.1
  • 31


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.