-
1
-
-
33749515447
-
Quadratic nonlinear derivative Schrödinger equations. I
-
Bejenaru I. Quadratic nonlinear derivative Schrödinger equations. I. Int. Math. Res. Pap. IMRP 2007, 2006. 84 pp.
-
(2007)
Int. Math. Res. Pap. IMRP
, vol.2006
, pp. 84
-
-
Bejenaru, I.1
-
2
-
-
77951160233
-
Quadratric nonlinear derivative Schrödinger equations. II
-
Bejenaru I. Quadratric nonlinear derivative Schrödinger equations. II. Trans. Amer. Math. Soc. 2008, 360(11):5925-5957.
-
(2008)
Trans. Amer. Math. Soc.
, vol.360
, Issue.11
, pp. 5925-5957
-
-
Bejenaru, I.1
-
3
-
-
56649094234
-
Large data local solutions for the derivative NLS equation
-
Bejenaru I., Tataru D. Large data local solutions for the derivative NLS equation. J. Eur. Math. Soc. 2008, 10:957-985.
-
(2008)
J. Eur. Math. Soc.
, vol.10
, pp. 957-985
-
-
Bejenaru, I.1
Tataru, D.2
-
5
-
-
0002738813
-
Local existence for semilinear Schrödinger equations
-
Chihara H. Local existence for semilinear Schrödinger equations. Math. Japon. 1995, 42:35-52.
-
(1995)
Math. Japon.
, vol.42
, pp. 35-52
-
-
Chihara, H.1
-
6
-
-
84968508844
-
Local smoothing properties of dispersive equations
-
Constantin P., Saut J.-C. Local smoothing properties of dispersive equations. J. Amer. Math. Soc. 1989, 1:413-446.
-
(1989)
J. Amer. Math. Soc.
, vol.1
, pp. 413-446
-
-
Constantin, P.1
Saut, J.-C.2
-
7
-
-
84990700842
-
Microlocal dispersive smoothing for the Schrödinger equation
-
Craig W., Kappeler T., Strauss W. Microlocal dispersive smoothing for the Schrödinger equation. Comm. Pure Appl. Math. 1995, 48(8):769-860.
-
(1995)
Comm. Pure Appl. Math.
, vol.48
, Issue.8
, pp. 769-860
-
-
Craig, W.1
Kappeler, T.2
Strauss, W.3
-
8
-
-
0039250942
-
Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow
-
Doi S. Smoothing effects for Schrödinger evolution equation and global behavior of geodesic flow. Math. Ann. 2000, 318:355-389.
-
(2000)
Math. Ann.
, vol.318
, pp. 355-389
-
-
Doi, S.1
-
9
-
-
84972525950
-
Remarks on nonlinear Schrödinger equations in one space dimension
-
Hayashi N., Ozawa T. Remarks on nonlinear Schrödinger equations in one space dimension. Differential Integral Equations 1994, 7:453-461.
-
(1994)
Differential Integral Equations
, vol.7
, pp. 453-461
-
-
Hayashi, N.1
Ozawa, T.2
-
10
-
-
0003216788
-
Lectures on Nonlinear Hyperbolic Differential Equations
-
Berlin
-
L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, in: Mathematiques & Applications, Berlin, 1997.
-
(1997)
Mathematiques & Applications
-
-
Hörmander, L.1
-
11
-
-
84972566457
-
2 well-posedness of the Cauchy problem for Schrödinger type equations on a Riemannian manifold and Maslov theory
-
2 well-posedness of the Cauchy problem for Schrödinger type equations on a Riemannian manifold and Maslov theory. Duke Math. J. 1988, 56:549-588.
-
(1988)
Duke Math. J.
, vol.56
, pp. 549-588
-
-
Ichinose, W.1
-
12
-
-
0002362136
-
On the Cauchy problem for the (generalized) Korteweg-de Vries equation
-
Advances in Math. Supp. Studies
-
Kato T. On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in Applied Math. 1983, vol. 8:93-128.
-
(1983)
Studies in Applied Math.
, vol.8
, pp. 93-128
-
-
Kato, T.1
-
13
-
-
33748474667
-
The general quasilinear ultrahyperbolic Schrödinger equation
-
Kenig C.E., Ponce G., Rolvung C., Vega L. The general quasilinear ultrahyperbolic Schrödinger equation. Adv. Math. 2005, 196(2):402-433.
-
(2005)
Adv. Math.
, vol.196
, Issue.2
, pp. 402-433
-
-
Kenig, C.E.1
Ponce, G.2
Rolvung, C.3
Vega, L.4
-
14
-
-
24044448970
-
Variable coefficient Schrödinger flows for ultrahyperbolic operators
-
Kenig C.E., Ponce G., Rolvung C., Vega L. Variable coefficient Schrödinger flows for ultrahyperbolic operators. Adv. Math. 2006, 206(2):373-486.
-
(2006)
Adv. Math.
, vol.206
, Issue.2
, pp. 373-486
-
-
Kenig, C.E.1
Ponce, G.2
Rolvung, C.3
Vega, L.4
-
16
-
-
0039165707
-
Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations
-
Kenig C.E., Ponce G., Vega L. Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Invent. Math. 1998, 134:489-545.
-
(1998)
Invent. Math.
, vol.134
, pp. 489-545
-
-
Kenig, C.E.1
Ponce, G.2
Vega, L.3
-
17
-
-
7544251725
-
The Cauchy problem for quasi-linear Schrödinger equations
-
Kenig C.E., Ponce G., Vega L. The Cauchy problem for quasi-linear Schrödinger equations. Invent. Math. 2004, 158:343-388.
-
(2004)
Invent. Math.
, vol.158
, pp. 343-388
-
-
Kenig, C.E.1
Ponce, G.2
Vega, L.3
-
18
-
-
84956276540
-
Generalized solutions to the Cauchy problem for the Korteweg-de Vries equation
-
Krushkov S.N., Faminskii A.V. Generalized solutions to the Cauchy problem for the Korteweg-de Vries equation. Math. U.S.S.R. Sbornik 1984, 48:93-138.
-
(1984)
Math. U.S.S.R. Sbornik
, vol.48
, pp. 93-138
-
-
Krushkov, S.N.1
Faminskii, A.V.2
-
19
-
-
0037238971
-
On the initial value problem for the one dimensional quasilinear Schrödinger equation
-
Lim W.-K., Ponce G. On the initial value problem for the one dimensional quasilinear Schrödinger equation. SIAM J. Math. Anal. 2003, 34:435-459.
-
(2003)
SIAM J. Math. Anal.
, vol.34
, pp. 435-459
-
-
Lim, W.-K.1
Ponce, G.2
-
20
-
-
77951190953
-
Introduction to Nonlinear Dispersive Equations
-
Springer, New York
-
Linares F., Ponce G. Introduction to Nonlinear Dispersive Equations. Universitext 2009, Springer, New York.
-
(2009)
Universitext
-
-
Linares, F.1
Ponce, G.2
-
21
-
-
63449104934
-
Wave packet parametrices for evolutions governed by PDO's with rough symbols
-
Marzuola J., Metcalfe J., Tataru D. Wave packet parametrices for evolutions governed by PDO's with rough symbols. Proc. Amer. Math. Soc. 2007, 136(2):597-604.
-
(2007)
Proc. Amer. Math. Soc.
, vol.136
, Issue.2
, pp. 597-604
-
-
Marzuola, J.1
Metcalfe, J.2
Tataru, D.3
-
22
-
-
0001736587
-
Some remarks on the Cauchy problem
-
Mizohata S. Some remarks on the Cauchy problem. J. Math. Kyoto Univ. 1961, 1:109-127.
-
(1961)
J. Math. Kyoto Univ.
, vol.1
, pp. 109-127
-
-
Mizohata, S.1
-
25
-
-
84864745401
-
Ill-posedness for the quadratic D-NLS equation
-
Master's Thesis, University of California at Berkeley
-
T. Schottdorf, Ill-posedness for the quadratic D-NLS equation, Master's Thesis, University of California at Berkeley, 2010.
-
(2010)
-
-
Schottdorf, T.1
-
26
-
-
0001679726
-
Regularity of solutions to the Schrödinger equations
-
Sjölin P. Regularity of solutions to the Schrödinger equations. Duke Math. J. 1987, 55:699-715.
-
(1987)
Duke Math. J.
, vol.55
, pp. 699-715
-
-
Sjölin, P.1
-
27
-
-
0009035492
-
Lectures on Nonlinear Wave Equations
-
International Press, Boston
-
Sogge C.D. Lectures on Nonlinear Wave Equations. Monographs in Analysis 1995, vol. II. International Press, Boston.
-
(1995)
Monographs in Analysis
, vol.2
-
-
Sogge, C.D.1
-
28
-
-
18144376718
-
Rough solutions for the wave maps equation
-
Tataru D. Rough solutions for the wave maps equation. Amer. J. Math. 2005, 127:293-377.
-
(2005)
Amer. J. Math.
, vol.127
, pp. 293-377
-
-
Tataru, D.1
-
30
-
-
0000801121
-
The Schrödinger equation: pointwise convergence to the initial data
-
Vega L. The Schrödinger equation: pointwise convergence to the initial data. Proc. Amer. Math. Soc. 1988, 102:874-878.
-
(1988)
Proc. Amer. Math. Soc.
, vol.102
, pp. 874-878
-
-
Vega, L.1
|