-
1
-
-
0002859579
-
Positive Lyapounov exponents for most energies
-
Springer, Berlin, Geometric Aspects of Functional Analysis
-
Bourgain J. Positive Lyapounov exponents for most energies. Lecture Notes in Math. 2000, vol. 1745:37-66. Springer, Berlin.
-
(2000)
Lecture Notes in Math.
, vol.1745
, pp. 37-66
-
-
Bourgain, J.1
-
3
-
-
84863990674
-
One-dimensional Schrdinger operators with high potential barriers
-
Birkhuser, Basel, Operator Calculus and Spectral Theory (Lambrecht, 1991)
-
Kirsch W., Molchanov S.A., Pastur L.A. One-dimensional Schrdinger operators with high potential barriers. Oper. Theory Adv. Appl.. Comm. Math. Phys. 2010, 295(3):853-875. Birkhuser, Basel.
-
(2010)
Oper. Theory Adv. Appl.. Comm. Math. Phys.
, vol.295
, Issue.3
, pp. 853-875
-
-
Kirsch, W.1
Molchanov, S.A.2
Pastur, L.A.3
-
5
-
-
0031168543
-
Localization for Schrödinger operators with effective barriers
-
Stolz G. Localization for Schrödinger operators with effective barriers. J. Funct. Anal. 1997, 146(2):416-429.
-
(1997)
J. Funct. Anal.
, vol.146
, Issue.2
, pp. 416-429
-
-
Stolz, G.1
-
6
-
-
39849091287
-
Spectral properties of Schrödinger operators with decaying potentials
-
Amer. Math. Soc., Providence, RI, Part 2, Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon's 60th Birthday
-
Denisov S., Kiselev A. Spectral properties of Schrödinger operators with decaying potentials. Proc. Sympos. Pure Math. 2007, vol. 76:565-589. Amer. Math. Soc., Providence, RI, Part 2.
-
(2007)
Proc. Sympos. Pure Math.
, vol.76
, pp. 565-589
-
-
Denisov, S.1
Kiselev, A.2
-
7
-
-
0001062332
-
On the dense point spectrum of Schrödinger and Dirac operators
-
(in Russian)
-
Naboko S.N. On the dense point spectrum of Schrödinger and Dirac operators. Teoret. Mat. Fiz. 1986, 68(1):18-28. (in Russian).
-
(1986)
Teoret. Mat. Fiz.
, vol.68
, Issue.1
, pp. 18-28
-
-
Naboko, S.N.1
-
8
-
-
0000424988
-
Über merkwürdige diskrete Eigenwerte
-
von Neumann J., Wigner E. Über merkwürdige diskrete Eigenwerte. Phys. Z. 1929, 30:467-470.
-
(1929)
Phys. Z.
, vol.30
, pp. 467-470
-
-
von Neumann, J.1
Wigner, E.2
-
9
-
-
21444440696
-
Some Schrödinger operators with dense point spectrum
-
Simon B. Some Schrödinger operators with dense point spectrum. Proc. Amer. Math. Soc. 1997, 125:203-208.
-
(1997)
Proc. Amer. Math. Soc.
, vol.125
, pp. 203-208
-
-
Simon, B.1
-
10
-
-
84864022194
-
-
Orthogonal polynomials with recursion coefficients of generalized bounded variation.
-
M. Lukic, Orthogonal polynomials with recursion coefficients of generalized bounded variation.
-
-
-
Lukic, M.1
-
11
-
-
67650662444
-
Generalized bounded variation and inserting point masses
-
Wong M.-W.L. Generalized bounded variation and inserting point masses. Constr. Approx. 2009, 30(1):1-15.
-
(2009)
Constr. Approx.
, vol.30
, Issue.1
, pp. 1-15
-
-
Wong, M.-W.L.1
-
12
-
-
79956191929
-
Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian
-
Damanik D., Gorodetski A. Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian. Comm. Math. Phys. 2011, 305(1):221-277.
-
(2011)
Comm. Math. Phys.
, vol.305
, Issue.1
, pp. 221-277
-
-
Damanik, D.1
Gorodetski, A.2
-
13
-
-
0003208077
-
Jacobi Operators and Completely Integrable Nonlinear Lattices
-
Amer. Math. Soc., Rhode Island
-
Teschl G. Jacobi Operators and Completely Integrable Nonlinear Lattices. Math. Surv. and Mon. 2000, vol. 72. Amer. Math. Soc., Rhode Island.
-
(2000)
Math. Surv. and Mon.
, vol.72
-
-
Teschl, G.1
-
14
-
-
33847654434
-
Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators
-
Combes J.M., Thomas L. Asymptotic behaviour of eigenfunctions for multiparticle Schrödinger operators. Comm. Math. Phys. 1973, 34:251-270.
-
(1973)
Comm. Math. Phys.
, vol.34
, pp. 251-270
-
-
Combes, J.M.1
Thomas, L.2
-
15
-
-
0002638383
-
Duality and singular continuous spectrum in the almost Mathieu equation
-
Gordon A., Jitomirskaya S., Last Y., Simon B. Duality and singular continuous spectrum in the almost Mathieu equation. Acta Math. 1997, 178:169-183.
-
(1997)
Acta Math.
, vol.178
, pp. 169-183
-
-
Gordon, A.1
Jitomirskaya, S.2
Last, Y.3
Simon, B.4
-
16
-
-
79960767417
-
Semiclassical analysis of the largest gap of quasi-periodic Schrödinger operators
-
Krüger H. Semiclassical analysis of the largest gap of quasi-periodic Schrödinger operators. Math. Model. Nat. Phenom. 2010, 5(4):256-268.
-
(2010)
Math. Model. Nat. Phenom.
, vol.5
, Issue.4
, pp. 256-268
-
-
Krüger, H.1
|