-
2
-
-
0030539976
-
The overlay of lower envelopes in 3-space and its applications
-
P. K. Agarwal, O. Cheong and M. Sharir, The overlay of lower envelopes in 3-space and its applications, Discrete Comput. Geom. 15 (1996), 1-13.
-
(1996)
Discrete Comput. Geom.
, vol.15
, pp. 1-13
-
-
Agarwal, P.K.1
Cheong, O.2
Sharir, M.3
-
3
-
-
77954924604
-
Kinetic stable delaunay graphs
-
P. K. Agarwal, J. Gao, L. Guibas, H. Kaplan, V. Koltun, N. Rubin and M. Sharir, Kinetic stable Delaunay graphs, Proc. 26th Annu. Symp. on Comput. Geom. (2010), 127-136.
-
(2010)
Proc. 26th Annu. Symp. on Comput. Geom.
, pp. 127-136
-
-
Agarwal, P.K.1
Gao, J.2
Guibas, L.3
Kaplan, H.4
Koltun, V.5
Rubin, N.6
Sharir, M.7
-
4
-
-
33750379563
-
A 2D kinetic triangulation with near-quadratic topological changes
-
P. K. Agarwal, Y. Wang and H. Yu, A 2D kinetic triangulation with near-quadratic topological changes, Discrete Comput. Geom. 36 (2006), 573-592.
-
(2006)
Discrete Comput. Geom.
, vol.36
, pp. 573-592
-
-
Agarwal, P.K.1
Wang, Y.2
Yu, H.3
-
5
-
-
0001781555
-
Voronoi diagrams
-
J.-R. Sack and J. Urrutia, Eds., Elsevier, Amsterdam
-
F. Aurenhammer and R. Klein, Voronoi diagrams, in Handbook of Computational Geometry, J.-R. Sack and J. Urrutia, Eds., Elsevier, Amsterdam, 2000, pages 201-290.
-
(2000)
Handbook of Computational Geometry
, pp. 201-290
-
-
Aurenhammer, F.1
Klein, R.2
-
6
-
-
0010252061
-
1 voronoi diagram of moving points
-
1 Voronoi diagram of moving points, Comput. Geom. Theory Appl. 7 (1997), 73-80.
-
(1997)
Comput. Geom. Theory Appl.
, vol.7
, pp. 73-80
-
-
Chew, L.P.1
-
7
-
-
0001702902
-
Applications of random sampling in computational geometry, II
-
K. Clarkson and P. Shor, Applications of random sampling in computational geometry, II, Discrete Comput. Geom. 4 (1989), 387-421.
-
(1989)
Discrete Comput. Geom.
, vol.4
, pp. 387-421
-
-
Clarkson, K.1
Shor, P.2
-
11
-
-
0002654690
-
Voronoi diagrams and delaunay triangulations
-
J. E. Goodman and J. O'Rourke, editors CRC Press, Inc., Boca Raton, FL, USA, second edition
-
S. Fortune, Voronoi diagrams and Delaunay triangulations, In J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, Inc., Boca Raton, FL, USA, second edition, 2004, pages 513-528.
-
(2004)
Handbook of Discrete and Computational Geometry
, pp. 513-528
-
-
Fortune, S.1
-
12
-
-
84865519586
-
Voronoi diagrams of moving points in the plane
-
of Lecture Notes Comput. Sci. Springer-Verlag
-
L. J. Guibas, J. S. B. Mitchell and T. Roos, Voronoi diagrams of moving points in the plane, Proc. 17th Internat. Workshop Graph-Theoret. Concepts Comput. Sci., volume 570 of Lecture Notes Comput. Sci., pages 113-125. Springer-Verlag, 1992.
-
(1992)
Proc. 17th Internat. Workshop Graph-theoret. Concepts Comput. Sci.
, vol.570
, pp. 113-125
-
-
Guibas, L.J.1
Mitchell, J.S.B.2
Roos, T.3
-
13
-
-
0040231871
-
Voronoi diagrams of rigidly moving sets of points
-
D. P. Huttenlocher, K. Kedem and J. M. Kleinberg, Voronoi Diagrams of Rigidly Moving Sets of Points, Inf. Process. Lett. 43 (4) (1992), 217-223.
-
(1992)
Inf. Process. Lett.
, vol.43
, Issue.4
, pp. 217-223
-
-
Huttenlocher, D.P.1
Kedem, K.2
Kleinberg, J.M.3
-
14
-
-
84974753877
-
Convex distance functions in 3-space are different
-
C. Icking, R. Klein, N.-M. Lê and L. Ma, Convex distance functions in 3-space are different, Fundam. Inform. 22 (4) (1995), 331-352.
-
(1995)
Fundam. Inform.
, vol.22
, Issue.4
, pp. 331-352
-
-
Icking, C.1
Klein, R.2
Lê, N.-M.3
Ma, L.4
-
15
-
-
78751650150
-
A kinetic triangulation scheme for moving points in the plane
-
H. Kaplan, N. Rubin and M. Sharir, A kinetic triangulation scheme for moving points in the plane, Comput. Geom. Theory Appl. 44 (2011), 191-205.
-
(2011)
Comput. Geom. Theory Appl.
, vol.44
, pp. 191-205
-
-
Kaplan, H.1
Rubin, N.2
Sharir, M.3
-
16
-
-
0742324183
-
Ready, set, go! The voronoi diagram of moving points that start from a line
-
V. Koltun, Ready, Set, Go! The Voronoi diagram of moving points that start from a line, Inf. Process. Lett. 89 (5) (2004), 233-235.
-
(2004)
Inf. Process. Lett.
, vol.89
, Issue.5
, pp. 233-235
-
-
Koltun, V.1
-
17
-
-
0037623976
-
3-dimensional euclidean voronoi diagrams of lines with a fixed number of orientations
-
V. Koltun and M. Sharir, 3-dimensional Euclidean Voronoi diagrams of lines with a fixed number of orientations, SIAM J. Comput. 32 (3) (2003), 616-642.
-
(2003)
SIAM J. Comput.
, vol.32
, Issue.3
, pp. 616-642
-
-
Koltun, V.1
Sharir, M.2
|