메뉴 건너뛰기




Volumn 95, Issue , 2012, Pages 105-116

Nearest-neighbor method using multiple neighborhood similarities for social media data mining

Author keywords

Locality sensitive hashing; Multiple neighborhood similarity; Nearest neighbor method; Visual categorization

Indexed keywords

DISTANCE MEASURE; HIGH DIMENSIONS; IMAGE FEATURES; LABELED DATA; LOCAL DENSITY; LOCALITY SENSITIVE HASHING; MACHINE LEARNING METHODS; MULTIPLE NEIGHBORHOODS; NEAREST NEIGHBOR METHOD; NEAREST NEIGHBOR SEARCH; NEAREST-NEIGHBOR APPROACHES; REAL-WORLD IMAGE DATA; SEMANTIC INFORMATION; SIMILARITY MEASURE; SMALL DATA SET; SOCIAL MEDIA; VISUAL CATEGORIZATION;

EID: 84863837043     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.06.039     Document Type: Article
Times cited : (14)

References (51)
  • 1
    • 84863820254 scopus 로고    scopus 로고
    • http://blog.nielsen.com/nielsenwire/global/social-media-accounts-for-22-percent-of-time-online/.
  • 2
    • 84863820253 scopus 로고    scopus 로고
    • http://www.flickr.com.
  • 3
    • 84863851709 scopus 로고    scopus 로고
    • http://www.youtube.com.
  • 4
    • 84863851708 scopus 로고    scopus 로고
    • http://www.twitter.com.
  • 6
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • Bentley J.L. Multidimensional binary search trees used for associative searching. Commun. ACM 1975, 18(9):509-517.
    • (1975) Commun. ACM , vol.18 , Issue.9 , pp. 509-517
    • Bentley, J.L.1
  • 8
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training, in: Proceeding of 11th Annual Conference on Computational Learning Theory
    • A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceeding of 11th Annual Conference on Computational Learning Theory, 1998, pp. 92-100.
    • (1998) , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 10
    • 36849014901 scopus 로고    scopus 로고
    • Representing Shape with a Spatial Pyramid Kernel. CIVR
    • A. Bosch, A. Zisserman, and X. Munoz. Representing Shape with a Spatial Pyramid Kernel. CIVR, 2007.
    • (2007)
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 12
    • 0036040277 scopus 로고    scopus 로고
    • Similarity Estimation Techniques from Rounding Algorithms. ACM Symposium on Theory of Computing
    • M. Charikar, Similarity Estimation Techniques from Rounding Algorithms. ACM Symposium on Theory of Computing, 2002.
    • (2002)
    • Charikar, M.1
  • 14
    • 4544259509 scopus 로고    scopus 로고
    • Locality-sensitive hashing scheme based on p-stable distributions, in: Proceedings of the 20th Annual Symposium on Computational Geometry
    • M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on p-stable distributions, in: Proceedings of the 20th Annual Symposium on Computational Geometry, 2004, pp. 253-262.
    • (2004) , pp. 253-262
    • Datar, M.1    Immorlica, N.2    Indyk, P.3    Mirrokni, V.S.4
  • 18
    • 84863830826 scopus 로고
    • Flexible Metric Nearest Neighbor Classification. Technical Report
    • J.H. Friedman, Flexible Metric Nearest Neighbor Classification. Technical Report, 1994.
    • (1994)
    • Friedman, J.H.1
  • 23
    • 85031999247 scopus 로고
    • R-Trees: A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD International Conference on Management of Data
    • A. Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching. Proc. ACM SIGMOD International Conference on Management of Data, 1984, pp. 47-57.
    • (1984) , pp. 47-57
    • Guttman, A.1
  • 37
    • 54749092170 scopus 로고    scopus 로고
    • 80 million tiny images: a large data set for nonparametric object and scene recognition
    • Torralba A., Fergus R., Freeman W.T. 80 million tiny images: a large data set for nonparametric object and scene recognition. PAMI 2008, 30(11):1958-1970.
    • (2008) PAMI , vol.30 , Issue.11 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 39
    • 63049138297 scopus 로고    scopus 로고
    • Beyond distance measurement: constructing neighborhood similarity for video annotation
    • Wang M., Hua X.-S., Tang J., Hong R. Beyond distance measurement: constructing neighborhood similarity for video annotation. IEEE Trans. Multimedia 2009, 11(3):465-476.
    • (2009) IEEE Trans. Multimedia , vol.11 , Issue.3 , pp. 465-476
    • Wang, M.1    Hua, X.-S.2    Tang, J.3    Hong, R.4
  • 42
    • 84863840410 scopus 로고    scopus 로고
    • S3MKL: Scalable Semi-Supervised Multiple Kernel Learning for Image Data MiningACM Multimedia
    • S. Wang, S. Jiang, Q. Huang and Q. Tian. S3MKL: Scalable Semi-Supervised Multiple Kernel Learning for Image Data MiningACM Multimedia, 2010.
    • (2010)
    • Wang, S.1    Jiang, S.2    Huang, Q.3    Tian, Q.4
  • 44
  • 50
    • 84863830821 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey. Technical Report 1530, University of Wisconsin-Madison
    • X. Zhu, Semi-supervised learning literature survey. Technical Report 1530, University of Wisconsin-Madison, 2006.
    • (2006)
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.