메뉴 건너뛰기




Volumn 26, Issue 7, 2012, Pages 400-405

A robust regression approach for spectrophotometric signal analysis

Author keywords

Chemical component concentration estimation; Data fusion; Multilayer perceptron (MLP) neural network; Near infrared (NIR) spectroscopy; Radial basis function (RBF) neural network; Support vector machines (SVM)

Indexed keywords

DATA FUSION; FRUIT JUICES; INFRARED DEVICES; NEAR INFRARED SPECTROSCOPY; RADIAL BASIS FUNCTION NETWORKS; REGRESSION ANALYSIS;

EID: 84863781708     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.2455     Document Type: Article
Times cited : (5)

References (22)
  • 2
    • 0033056282 scopus 로고    scopus 로고
    • Analytical control of pharmaceutical production steps by near infrared reflectance spectroscopy
    • Blanco M, Coello J, Eustaquio A, Iturriaga H, Maspoch S. Analytical control of pharmaceutical production steps by near infrared reflectance spectroscopy. Anal. Chim. Acta 1999; 392(2-3): 237-246.
    • (1999) Anal. Chim. Acta , vol.392 , Issue.2-3 , pp. 237-246
    • Blanco, M.1    Coello, J.2    Eustaquio, A.3    Iturriaga, H.4    Maspoch, S.5
  • 5
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989; 2: 359-366.
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 6
    • 39149085365 scopus 로고    scopus 로고
    • Artificial neural networks in chemometrics: history, examples and perspectives
    • Marini F, Bucci R, Magrì AL, Magrì AD. Artificial neural networks in chemometrics: history, examples and perspectives. Microchem. J. 2008; 88: 178-185.
    • (2008) Microchem. J. , vol.88 , pp. 178-185
    • Marini, F.1    Bucci, R.2    Magrì, A.L.3    Magrì, A.D.4
  • 8
    • 85153977154 scopus 로고    scopus 로고
    • Support vector machines for classification and regression. Technical Report, Faculty of Engineering, Science and Mathematics School of Electronics and Computer Science, University of Southampton
    • Gunn SR. Support vector machines for classification and regression. Technical Report, Faculty of Engineering, Science and Mathematics School of Electronics and Computer Science, University of Southampton, 1998.
    • (1998)
    • Gunn, S.R.1
  • 9
    • 12844286965 scopus 로고    scopus 로고
    • Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data
    • Bruzzone L, Melgani F. Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data. IEEE Trans. Geosci. Remote Sens. 2005; 43: 159-174.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 159-174
    • Bruzzone, L.1    Melgani, F.2
  • 10
    • 58149203252 scopus 로고    scopus 로고
    • Support vector machines and its applications in chemistry
    • Li H, Liang Y, Xu Q. Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst. 2009; 95: 188-198.
    • (2009) Chemom. Intell. Lab. Syst. , vol.95 , pp. 188-198
    • Li, H.1    Liang, Y.2    Xu, Q.3
  • 11
    • 18844431843 scopus 로고    scopus 로고
    • Ensemble methods and partial least squares regression
    • Mevik B, Segtnan V, Naes T. Ensemble methods and partial least squares regression. J. Chemom. 2004; 18: 498-507.
    • (2004) J. Chemom. , vol.18 , pp. 498-507
    • Mevik, B.1    Segtnan, V.2    Naes, T.3
  • 12
    • 43049167280 scopus 로고    scopus 로고
    • Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration
    • Xu L, et al. Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration. Anal. Chim. Acta 2008; 616: 138-143.
    • (2008) Anal. Chim. Acta , vol.616 , pp. 138-143
    • Xu, L.1
  • 13
    • 77649163836 scopus 로고    scopus 로고
    • Improved calibration of near-infrared spectra by using ensembles of neural network models
    • Ukil A, et al. Improved calibration of near-infrared spectra by using ensembles of neural network models. IEEE Sensors J. 2010; 10(3).
    • (2010) IEEE Sensors J. , vol.10 , Issue.3
    • Ukil, A.1
  • 14
    • 34249307438 scopus 로고    scopus 로고
    • Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra
    • Shinzawa H, et al. Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra. J. Chemom. 2006; 20: 436-444.
    • (2006) J. Chemom. , vol.20 , pp. 436-444
    • Shinzawa, H.1
  • 15
    • 49749104280 scopus 로고    scopus 로고
    • Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples
    • Tan C, et al. Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples. Anal. Sci. 2008; 24.
    • (2008) Anal. Sci. , vol.24
    • Tan, C.1
  • 16
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert DH. Stacked generalization. Neural Netw. 1992; 5: 241-259.
    • (1992) Neural Netw. , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 17
    • 0029372769 scopus 로고
    • Methods for combining expert's probability assessment
    • Jacobs RA. Methods for combining expert's probability assessment. Neural Comput. 1995; 7: 867-888.
    • (1995) Neural Comput. , vol.7 , pp. 867-888
    • Jacobs, R.A.1
  • 18
    • 0026892150 scopus 로고
    • Consensus theoretic classification methods
    • Benediktsson JA, Swain PH. Consensus theoretic classification methods. IEEE Trans. Syst. 1992; 22: 688-704.
    • (1992) IEEE Trans. Syst. , vol.22 , pp. 688-704
    • Benediktsson, J.A.1    Swain, P.H.2
  • 20
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T, Girosi F. Networks for approximation and learning. Proceedings of the IEEE 1990; 78: 1481-1497.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 21
    • 85153975175 scopus 로고    scopus 로고
    • Dataset provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT, meurens@bnut.ucl.ac.be. Dataset available from
    • Dataset provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT, meurens@bnut.ucl.ac.be. Dataset available from.
  • 22
    • 1642475168 scopus 로고    scopus 로고
    • Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models
    • Benoudjit N, Cools E, Meurens M, Verleysen M. Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models. Chemom. Intell. Lab. Syst. 2004; 70: 47-53.
    • (2004) Chemom. Intell. Lab. Syst. , vol.70 , pp. 47-53
    • Benoudjit, N.1    Cools, E.2    Meurens, M.3    Verleysen, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.