-
1
-
-
0000249159
-
On-line monitoring of powder blend homogeneity by near-infrared spectroscopy
-
Sekulic S, Ward HW, Brannegan D, Stanley E, Evans C, Sciavolino S, Hailey P, Aldridge P. On-line monitoring of powder blend homogeneity by near-infrared spectroscopy. Anal. Chem. 1996; 68: 509-513.
-
(1996)
Anal. Chem.
, vol.68
, pp. 509-513
-
-
Sekulic, S.1
Ward, H.W.2
Brannegan, D.3
Stanley, E.4
Evans, C.5
Sciavolino, S.6
Hailey, P.7
Aldridge, P.8
-
2
-
-
0033056282
-
Analytical control of pharmaceutical production steps by near infrared reflectance spectroscopy
-
Blanco M, Coello J, Eustaquio A, Iturriaga H, Maspoch S. Analytical control of pharmaceutical production steps by near infrared reflectance spectroscopy. Anal. Chim. Acta 1999; 392(2-3): 237-246.
-
(1999)
Anal. Chim. Acta
, vol.392
, Issue.2-3
, pp. 237-246
-
-
Blanco, M.1
Coello, J.2
Eustaquio, A.3
Iturriaga, H.4
Maspoch, S.5
-
4
-
-
34447097255
-
A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies
-
Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal. 2007; 44: 683-700.
-
(2007)
J. Pharm. Biomed. Anal.
, vol.44
, pp. 683-700
-
-
Roggo, Y.1
Chalus, P.2
Maurer, L.3
Lema-Martinez, C.4
Edmond, A.5
Jent, N.6
-
5
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989; 2: 359-366.
-
(1989)
Neural Netw.
, vol.2
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
6
-
-
39149085365
-
Artificial neural networks in chemometrics: history, examples and perspectives
-
Marini F, Bucci R, Magrì AL, Magrì AD. Artificial neural networks in chemometrics: history, examples and perspectives. Microchem. J. 2008; 88: 178-185.
-
(2008)
Microchem. J.
, vol.88
, pp. 178-185
-
-
Marini, F.1
Bucci, R.2
Magrì, A.L.3
Magrì, A.D.4
-
8
-
-
85153977154
-
-
Support vector machines for classification and regression. Technical Report, Faculty of Engineering, Science and Mathematics School of Electronics and Computer Science, University of Southampton
-
Gunn SR. Support vector machines for classification and regression. Technical Report, Faculty of Engineering, Science and Mathematics School of Electronics and Computer Science, University of Southampton, 1998.
-
(1998)
-
-
Gunn, S.R.1
-
9
-
-
12844286965
-
Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data
-
Bruzzone L, Melgani F. Robust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data. IEEE Trans. Geosci. Remote Sens. 2005; 43: 159-174.
-
(2005)
IEEE Trans. Geosci. Remote Sens.
, vol.43
, pp. 159-174
-
-
Bruzzone, L.1
Melgani, F.2
-
10
-
-
58149203252
-
Support vector machines and its applications in chemistry
-
Li H, Liang Y, Xu Q. Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst. 2009; 95: 188-198.
-
(2009)
Chemom. Intell. Lab. Syst.
, vol.95
, pp. 188-198
-
-
Li, H.1
Liang, Y.2
Xu, Q.3
-
11
-
-
18844431843
-
Ensemble methods and partial least squares regression
-
Mevik B, Segtnan V, Naes T. Ensemble methods and partial least squares regression. J. Chemom. 2004; 18: 498-507.
-
(2004)
J. Chemom.
, vol.18
, pp. 498-507
-
-
Mevik, B.1
Segtnan, V.2
Naes, T.3
-
12
-
-
43049167280
-
Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration
-
Xu L, et al. Ensemble preprocessing of near-infrared (NIR) spectra for multivariate calibration. Anal. Chim. Acta 2008; 616: 138-143.
-
(2008)
Anal. Chim. Acta
, vol.616
, pp. 138-143
-
-
Xu, L.1
-
13
-
-
77649163836
-
Improved calibration of near-infrared spectra by using ensembles of neural network models
-
Ukil A, et al. Improved calibration of near-infrared spectra by using ensembles of neural network models. IEEE Sensors J. 2010; 10(3).
-
(2010)
IEEE Sensors J.
, vol.10
, Issue.3
-
-
Ukil, A.1
-
14
-
-
34249307438
-
Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra
-
Shinzawa H, et al. Investigations of bagged kernel partial least squares (KPLS) and boosting KPLS with applications to near-infrared (NIR) spectra. J. Chemom. 2006; 20: 436-444.
-
(2006)
J. Chemom.
, vol.20
, pp. 436-444
-
-
Shinzawa, H.1
-
15
-
-
49749104280
-
Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples
-
Tan C, et al. Random subspace regression ensemble for near-infrared spectroscopic calibration of tobacco samples. Anal. Sci. 2008; 24.
-
(2008)
Anal. Sci.
, vol.24
-
-
Tan, C.1
-
16
-
-
0026692226
-
Stacked generalization
-
Wolpert DH. Stacked generalization. Neural Netw. 1992; 5: 241-259.
-
(1992)
Neural Netw.
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
-
17
-
-
0029372769
-
Methods for combining expert's probability assessment
-
Jacobs RA. Methods for combining expert's probability assessment. Neural Comput. 1995; 7: 867-888.
-
(1995)
Neural Comput.
, vol.7
, pp. 867-888
-
-
Jacobs, R.A.1
-
18
-
-
0026892150
-
Consensus theoretic classification methods
-
Benediktsson JA, Swain PH. Consensus theoretic classification methods. IEEE Trans. Syst. 1992; 22: 688-704.
-
(1992)
IEEE Trans. Syst.
, vol.22
, pp. 688-704
-
-
Benediktsson, J.A.1
Swain, P.H.2
-
20
-
-
0025490985
-
Networks for approximation and learning
-
Poggio T, Girosi F. Networks for approximation and learning. Proceedings of the IEEE 1990; 78: 1481-1497.
-
(1990)
Proceedings of the IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
21
-
-
85153975175
-
-
Dataset provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT, meurens@bnut.ucl.ac.be. Dataset available from
-
Dataset provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT, meurens@bnut.ucl.ac.be. Dataset available from.
-
-
-
-
22
-
-
1642475168
-
Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models
-
Benoudjit N, Cools E, Meurens M, Verleysen M. Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models. Chemom. Intell. Lab. Syst. 2004; 70: 47-53.
-
(2004)
Chemom. Intell. Lab. Syst.
, vol.70
, pp. 47-53
-
-
Benoudjit, N.1
Cools, E.2
Meurens, M.3
Verleysen, M.4
|