메뉴 건너뛰기




Volumn 53, Issue 4, 2012, Pages 749-767

Theoretical rate of convergence for interval inclusion functions

Author keywords

Approximation algorithms; Continuous problems; Facility location problems; Geometric branch and bound; Global optimization; Interval analysis

Indexed keywords

BENCH-MARK PROBLEMS; BOUND METHOD; BRANCH AND BOUNDS; CENTERED FORM; CONTINUOUS PROBLEMS; FACILITY LOCATION PROBLEM; INCLUSION FUNCTION; INTERVAL ANALYSIS; INTERVAL BRANCH-AND-BOUND METHOD; INTERVAL EXTENSION; LOWER BOUNDS; NON-CONVEX GLOBAL OPTIMIZATION; NUMERICAL STUDIES; RATE OF CONVERGENCE; SOLUTION ALGORITHMS; THEORETICAL POINTS; THEORETICAL RATES; WEBER PROBLEM;

EID: 84863724010     PISSN: 09255001     EISSN: 15732916     Source Type: Journal    
DOI: 10.1007/s10898-011-9735-9     Document Type: Article
Times cited : (7)

References (21)
  • 1
    • 0038226969 scopus 로고
    • Optimal centered forms
    • Baumann, E.: Optimal centered forms. BIT Numer. Math. 28, 80-87 (1988)
    • (1988) BIT Numer. Math. , vol.28 , pp. 80-87
    • Baumann, E.1
  • 2
    • 70349675894 scopus 로고    scopus 로고
    • Continuous location problems and big triangle small triangle: Constructing better bounds
    • Blanquero, R., Carrizosa, E.: Continuous location problems and big triangle small triangle: constructing better bounds. J. Global Optim. 45, 389-402 (2009)
    • (2009) J. Global Optim. , vol.45 , pp. 389-402
    • Blanquero, R.1    Carrizosa, E.2
  • 3
    • 34250472821 scopus 로고
    • Quadratic convergence in interval arithmetic
    • Chuba, W., Miller, W.: Quadratic convergence in interval arithmetic. Part I. BIT Numer. Math. 12, 284-290 (1972)
    • (1972) Part I. BIT Numer. Math. , vol.12 , pp. 284-290
    • Chuba, W.1    Miller, W.2
  • 4
    • 0003708365 scopus 로고    scopus 로고
    • The convergence speed of interval methods for global optimization
    • Csallner, A. E., Csendes, T.: The convergence speed of interval methods for global optimization. Comput. Math. Appl. 31, 173-178 (1996)
    • (1996) Comput. Math. Appl. , vol.31 , pp. 173-178
    • Csallner, A.E.1    Csendes, T.2
  • 5
    • 0347548275 scopus 로고    scopus 로고
    • The big triangle small triangle method for the solution of nonconvex facility location problems
    • Drezner, Z., Suzuki, A.: The big triangle small triangle method for the solution of nonconvex facility location problems. Oper. Res. 52, 128-135 (2004)
    • (2004) Oper. Res. , vol.52 , pp. 128-135
    • Drezner, Z.1    Suzuki, A.2
  • 6
    • 33845966078 scopus 로고    scopus 로고
    • Solving a huff-like competitive location and design model for profit maximization in the plane
    • Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Solving a Huff-like competitive location and design model for profit maximization in the plane. Eur. J. Oper. Res. 179, 1274-1287 (2007)
    • (2007) Eur. J. Oper. Res. , vol.179 , pp. 1274-1287
    • Fernández, J.1    Pelegrín, B.2    Plastria, F.3    Tóth, B.4
  • 9
    • 0022149016 scopus 로고
    • Theminisum andminimax location problems revisited
    • Hansen, P., Peeters, D., Richard, D., Thisse, J. F.: Theminisum andminimax location problems revisited. Oper. Res. 33, 1251-1265 (1985)
    • (1985) Oper. Res. , vol.33 , pp. 1251-1265
    • Hansen, P.1    Peeters, D.2    Richard, D.3    Thisse, J.F.4
  • 11
    • 0002185345 scopus 로고
    • Die zentrische form in der intervallarithmetik ihre quadratische konvergenz und ihre inklusionsisotonie
    • Krawczyk, R., Nickel, K.: Die zentrische Form in der Intervallarithmetik, ihre quadratische Konvergenz und ihre Inklusionsisotonie. Computing 28, 117-137 (1982)
    • (1982) Computing , vol.28 , pp. 117-137
    • Krawczyk, R.1    Nickel, K.2
  • 13
    • 0026941045 scopus 로고
    • Gbsss: The generalized big square small square method for planar single-facility location
    • Plastria, F.: GBSSS: the generalized big square small square method for planar single-facility location. Eur. J. Oper. Res. 62, 163-174 (1992)
    • (1992) Eur. J. Oper. Res. , vol.62 , pp. 163-174
    • Plastria, F.1
  • 15
    • 0042752627 scopus 로고
    • What can interval analysis do for global optimization?
    • Ratschek, H., Voller, R. L.: What can interval analysis do for global optimization?. J. Global Optim. 1, 111-130 (1991)
    • (1991) J. Global Optim. , vol.1 , pp. 111-130
    • Ratschek, H.1    Voller, R.L.2
  • 16
    • 77957886956 scopus 로고    scopus 로고
    • The theoretical and empirical rate of convergence for geometric branch-and-bound methods
    • Schöbel, A., Scholz, D.: The theoretical and empirical rate of convergence for geometric branch-and-bound methods. J. Global Optim. 48, 473-495 (2010)
    • (2010) J. Global Optim. , vol.48 , pp. 473-495
    • Schöbel, A.1    Scholz, D.2
  • 18
    • 22344458130 scopus 로고    scopus 로고
    • Empirical investigation of the convergence speed of inclusion functions in a global optimization context
    • Tóth, B., Csendes, T.: Empirical investigation of the convergence speed of inclusion functions in a global optimization context. Reliab. Comput. 11, 253-273 (2005)
    • (2005) Reliab. Comput. , vol.11 , pp. 253-273
    • Tóth, B.1    Csendes, T.2
  • 19
    • 33749679857 scopus 로고    scopus 로고
    • Empirical convergence speed of inclusion functions for facility location problems
    • Tóth, B., Fernández, J., Csendes, T.: Empirical convergence speed of inclusion functions for facility location problems. J. Comput. Appl. Math. 199, 384-389 (2007)
    • (2007) J. Comput. Appl. Math. , vol.199 , pp. 384-389
    • Tóth, B.1    Fernández, J.2    Csendes, T.3
  • 20
    • 55749101149 scopus 로고    scopus 로고
    • Sequential versus simultaneous approach in the location and design of two new facilities using planar huff-like models
    • Tóth, B., Fernández, J., Pelegrín, B., Plastria, F.: Sequential versus simultaneous approach in the location and design of two new facilities using planar Huff-like models. Comput. Oper. Res. 36, 1393-1405 (2009)
    • (2009) Comput. Oper. Res. , vol.36 , pp. 1393-1405
    • Tóth, B.1    Fernández, J.2    Pelegrín, B.3    Plastria, F.4
  • 21
    • 0010707492 scopus 로고
    • A D. C. Optimization method for single facility location problems
    • Tuy, H., Al-Khayyal, F., Zhou, F.: A D. C. optimization method for single facility location problems. J. Global Optim. 7, 209-227 (1995)
    • (1995) J. Global Optim. , vol.7 , pp. 209-227
    • Tuy, H.1    Al-Khayyal, F.2    Zhou, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.