메뉴 건너뛰기




Volumn 19, Issue E1, 2012, Pages

Automated identification of extreme-risk events in clinical incident reports

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; AUTOMATION; BAYESIAN LEARNING; DATA BASE; INCIDENT REPORT; INFORMATION RETRIEVAL; MEDICAL INFORMATICS; MEDICAL INFORMATION SYSTEM; PATIENT SAFETY; STATISTICAL ANALYSIS; SUPPORT VECTOR MACHINE;

EID: 84863550886     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1136/amiajnl-2011-000562     Document Type: Article
Times cited : (44)

References (33)
  • 1
    • 0012063382 scopus 로고    scopus 로고
    • TO err is Human: Building a safer Health System
    • Washing DC: US Institute of Medicine, National Academy Press
    • Kohn L, Corrigan J, Donaldson M. TO err is Human: Building a safer Health System. Committee on Quality of Health Care in America. Washing DC: US Institute of Medicine, National Academy Press, 1999:86e101.
    • (1999) Committee on Quality of Health Care in America , pp. 86-101
    • Kohn, L.1    Corrigan, J.2    Donaldson, M.3
  • 2
    • 0345471068 scopus 로고    scopus 로고
    • Evaluation of two methods for quality improvement in intensive care: facilitated incident monitoring and retrospective medical chart review
    • Beckmann U, Bohringer C, Carless R, et al. Evaluation of two methods for quality improvement in intensive care: facilitated incident monitoring and retrospective medical chart review. Crit Care Med 2003;31:1006e11.
    • (2003) Crit Care Med , vol.31 , pp. 1006-1011
    • Beckmann, U.1    Bohringer, C.2    Carless, R.3
  • 3
    • 0027369391 scopus 로고
    • Physician reporting compared with medicalrecord review to identify adverse medical events
    • O'Neil AC, Petersen LA, Cook EF, et al. Physician reporting compared with medicalrecord review to identify adverse medical events. Ann Intern Med 1993;119:370e6.
    • (1993) Ann Intern Med , vol.119 , pp. 370-376
    • O'Neil, A.C.1    Petersen, L.A.2    Cook, E.F.3
  • 4
    • 0035486819 scopus 로고    scopus 로고
    • Developing and deploying a patient safety program in a large health care delivery system: you can't fix what you don't know about
    • Bagian JP, Lee C, Gosbee J, et al. Developing and deploying a patient safety program in a large health care delivery system: you can't fix what you don't know about. Jt Comm J Qual Improv 2001;27:522e32.
    • (2001) Jt Comm J Qual Improv , vol.27 , pp. 522-532
    • Bagian, J.P.1    Lee, C.2    Gosbee, J.3
  • 5
    • 0032942425 scopus 로고    scopus 로고
    • Reasons for not reporting adverse incidents: an empirical study
    • Vincent C, Stanhope N, Crowley-Murphy M. Reasons for not reporting adverse incidents: an empirical study. J Eval Clin Pract 1999;5:13e21.
    • (1999) J Eval Clin Pract , vol.5 , pp. 13-21
    • Vincent, C.1    Stanhope, N.2    Crowley-Murphy, M.3
  • 6
    • 70349527871 scopus 로고    scopus 로고
    • Medication errors: how reliable are the severity ratings reported to the national reporting and learning system?
    • Williams SD, Ashcroft DM. Medication errors: how reliable are the severity ratings reported to the national reporting and learning system? Int J Qual Health Care 2009;21:316e20.
    • (2009) Int J Qual Health Care , vol.21 , pp. 316-320
    • Williams, S.D.1    Ashcroft, D.M.2
  • 7
    • 84880855760 scopus 로고    scopus 로고
    • University Centre for Clinical Governance Research in Health. Evaluation of the safety improvement program in New South Wales: Study no 6 report on program outcomes. Kensington: Centre for Clinical Governance Research, University of New South Wales. (accessed 6 Apr 2011)
    • University Centre for Clinical Governance Research in Health. Evaluation of the safety improvement program in New South Wales: Study no 6 report on program outcomes. Kensington: Centre for Clinical Governance Research, University of New South Wales. http://www.med.unsw.edu.au/medweb.nsf/resources/SIP2/$file/Final +SIP+Study+6.pdf (accessed 6 Apr 2011).
  • 8
    • 77954934278 scopus 로고    scopus 로고
    • Multiple accountabilities in incident reporting and management
    • Hor SY, Iedema R, Williams K, et al. Multiple accountabilities in incident reporting and management. Qual Health Res 2010;20:1091e100.
    • (2010) Qual Health Res , vol.20 , pp. 1091-1100
    • Hor, S.Y.1    Iedema, R.2    Williams, K.3
  • 9
    • 84880869898 scopus 로고    scopus 로고
    • NSW Health. Clinical Incident Management in the NSW public health system, JanuaryeJune 2009. (accessed 6 Apr 2011)
    • NSW Health. Clinical Incident Management in the NSW public health system, JanuaryeJune 2009. http://www.health.nsw.gov.au/resources/quality/incidentmgt/ pdf/incident_management_2009_01to06.pdf (accessed 6 Apr 2011).
  • 10
    • 84880865580 scopus 로고    scopus 로고
    • Megaputer Intelligence Application of Polyanalyst to Flight Safety Data at Southwest AirlinesdProof-of-concept Demonstration of Data and Text, Mining., (accessed 6 Jun 2011)
    • Megaputer Intelligence Application of Polyanalyst to Flight Safety Data at Southwest AirlinesdProof-of-concept Demonstration of Data and Text Mining. http://flightsafety. org/files/flight_safety_data_sw.pdf (accessed 6 Jun 2011).
  • 11
    • 84880868056 scopus 로고    scopus 로고
    • Enabling Discovery of Recurring Anomalies in Aerospace Problem Reports Using High-Dimensional Clustering Techniques
    • (accessed 6 Jun 2011)
    • Srivastava AN, Akella R, Cruz S. Enabling Discovery of Recurring Anomalies in Aerospace Problem Reports Using High-Dimensional Clustering Techniques. http://ti. arc.nasa.gov/m/pub-archive/archive/IEEE_TextMiningPaper_vrs4.pdf (accessed 6 Jun 2011).
    • Srivastava, A.N.1    Akella, R.2    Cruz, S.3
  • 12
    • 35648937541 scopus 로고    scopus 로고
    • Automatic discovery of anomalies reported in aerospace systems health and safety documents
    • Rohnert Park, California: American Institute of Aeronautics and Astronautics, (accessed 5 Jan 2012) 2007
    • Castle JP, Stutz JC, McIntosh DM. Automatic discovery of anomalies reported in aerospace systems health and safety documents. American Institute of Aeronautics and Astronautics 2007 Conference and Exhibit. Rohnert Park, California: American Institute of Aeronautics and Astronautics, 2007. http://ti.arc.nasa.gov/m/pub-archive/ 1322h/1322%20(Castle).pdf (accessed 5 Jan 2012).
    • American Institute of Aeronautics and Astronautics 2007 Conference and Exhibit
    • Castle, J.P.1    Stutz, J.C.2    McIntosh, D.M.3
  • 13
    • 78249238819 scopus 로고    scopus 로고
    • Automated detection of harm in healthcare with information technology: a systematic review
    • Govindan M, Van Citters AD, Nelson EC, et al. Automated detection of harm in healthcare with information technology: a systematic review. Qual Saf Health Care 2010;19:e11.
    • (2010) Qual Saf Health Care , vol.19
    • Govindan, M.1    Van Citters, A.D.2    Nelson, E.C.3
  • 14
    • 56149117540 scopus 로고    scopus 로고
    • Automatic identification and classification of surgical margin status from pathology reports following prostate cancer surgery
    • D'Avolio LW, Litwin MS, Rogers SO Jr, et al. Automatic identification and classification of surgical margin status from pathology reports following prostate cancer surgery. AMIA Annu Symp Proc 2007;11:160e4.
    • (2007) AMIA Annu Symp Proc , vol.11 , pp. 160-164
    • D'Avolio, L.W.1    Litwin, M.S.2    Rogers Jr., S.O.3
  • 15
    • 0042334852 scopus 로고    scopus 로고
    • Creating a text classifier to detect radiology reports describing mediastinal findings associated with inhalation anthrax and other disorders
    • Webber WC, Cooper GF, Hanbury P, et al. Creating a text classifier to detect radiology reports describing mediastinal findings associated with inhalation anthrax and other disorders. J Am Med Inform Assoc 2003;10: 494e503.
    • (2003) J Am Med Inform Assoc , vol.10 , pp. 494-503
    • Webber, W.C.1    Cooper, G.F.2    Hanbury, P.3
  • 16
    • 0036082141 scopus 로고    scopus 로고
    • Use of natural language processing to translate clinical information from a database of 889
    • Hripcsak G, Austin JH, Alderson PO, et al. Use of natural language processing to translate clinical information from a database of 889,921 chest radiographic reports. Radiology 2002;224:157e63.
    • (2002) 921 chest radiographic reports. Radiology , vol.224 , pp. 157-163
    • Hripcsak, G.1    Austin, J.H.2    Alderson, P.O.3
  • 17
    • 16544380603 scopus 로고    scopus 로고
    • Detecting adverse events in discharge summaries using variations on the simple bayes model
    • Visweswaran S, Hanbury P, Saul M, et al. Detecting adverse events in discharge summaries using variations on the simple bayes model. AMIA Annu Symp Proc 2003:689e93.
    • (2003) AMIA Annu Symp Proc , pp. 689-693
    • Visweswaran, S.1    Hanbury, P.2    Saul, M.3
  • 18
    • 21544453050 scopus 로고    scopus 로고
    • Automated detection of adverse events using natural language processing of discharge summaries
    • Melton GB, Hripcsak G. Automated detection of adverse events using natural language processing of discharge summaries. J Am Med Inform Assoc 2005;12:448e57.
    • (2005) J Am Med Inform Assoc , vol.12 , pp. 448-457
    • Melton, G.B.1    Hripcsak, G.2
  • 19
    • 80053260063 scopus 로고    scopus 로고
    • Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection
    • Botsis T, Nguyen MD, Woo EJ, et al. Text mining for the Vaccine Adverse Event Reporting System: medical text classification using informative feature selection. J Am Med Inform Assoc 2011;18:631e8.
    • (2011) J Am Med Inform Assoc , vol.18 , pp. 631-638
    • Botsis, T.1    Nguyen, M.D.2    Woo, E.J.3
  • 20
    • 78650364839 scopus 로고    scopus 로고
    • Automated categorisation of clinical incident reports using statistical text classification
    • Ong MS, Magrabi F, Coiera E. Automated categorisation of clinical incident reports using statistical text classification. Qual Saf Health Care 2010;19:e55.
    • (2010) Qual Saf Health Care , vol.19
    • Ong, M.S.1    Magrabi, F.2    Coiera, E.3
  • 21
    • 0023902574 scopus 로고
    • The Australian patient safety Foundation
    • Runciman WB. The Australian patient safety Foundation. Anaesth Intensive Care 1988;16:114e16.
    • (1988) Anaesth Intensive Care , vol.16 , pp. 114-116
    • Runciman, W.B.1
  • 22
    • 0036752174 scopus 로고    scopus 로고
    • Lessons from the Australian Patient Safety Foundation: setting up a national patient safety surveillance systemeis this the right model?
    • Runciman WB. Lessons from the Australian Patient Safety Foundation: setting up a national patient safety surveillance systemeis this the right model? Qual Saf Health Care 2002;11:246e51.
    • (2002) Qual Saf Health Care , vol.11 , pp. 246-251
    • Runciman, W.B.1
  • 23
    • 58849134223 scopus 로고    scopus 로고
    • Towards an international classification for patient safety: key concepts and terms
    • Runciman W, Hibbert P, Thomson R, et al. Towards an international classification for patient safety: key concepts and terms. Int J Qual Health Care 2009;21:18e26.
    • (2009) Int J Qual Health Care , vol.21 , pp. 18-26
    • Runciman, W.1    Hibbert, P.2    Thomson, R.3
  • 24
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F. Machine learning in automated text categorization. ACM Computing Surveys 2002;34:1e47.
    • (2002) ACM Computing Surveys , vol.34 , pp. 1-47
    • Sebastiani, F.1
  • 25
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: learning with many relevant features
    • Joachims T. Text categorization with support vector machines: learning with many relevant features. Machine Learning: ECML-98. Lect Notes Comput Sci 1998;1398:137e42.
    • (1998) Machine Learning: ECML-98. Lect Notes Comput Sci , vol.1398 , pp. 137-142
    • Joachims, T.1
  • 26
    • 84880880971 scopus 로고    scopus 로고
    • NSW Health. Severity Assessment Code (SAC) November.(accessed 6 Apr 2011)
    • NSW Health. Severity Assessment Code (SAC) November 2005. http://www.health. nsw.gov.au/pubs/2005/pdf/sac_matrix.pdf (accessed 6 Apr 2011).
    • (2005)
  • 27
    • 22944452794 scopus 로고    scopus 로고
    • Applying support vector machines to imbalanced datasets
    • Akbani R, Kwek S, Japkowicz N. Applying support vector machines to imbalanced datasets. Lect Notes Comput Sci 2004;3201:39e50.
    • (2004) Lect Notes Comput Sci , vol.3201 , pp. 39-50
    • Akbani, R.1    Kwek, S.2    Japkowicz, N.3
  • 28
    • 84891388102 scopus 로고    scopus 로고
    • Text mining: Predictive Methods for Analyzing Unstructured Information
    • Spinger
    • Weiss SM, Indurkhya N, Zhang T, et al. Text mining: Predictive Methods for Analyzing Unstructured Information. Spinger, 2005:30.
    • (2005) , pp. 30
    • Weiss, S.M.1    Indurkhya, N.2    Zhang, T.3
  • 29
    • 0006291183 scopus 로고    scopus 로고
    • A study using n-gram features for text categorization
    • Technical Report OEFAI-TR-98-30. Wien, Austria: Austrian Research Institute for Artificial Intelligence, (accessed 5 Jan 2012)
    • Fürnkranz J. A study using n-gram features for text categorization. Technical Report OEFAI-TR-98-30. Wien, Austria: Austrian Research Institute for Artificial Intelligence, 1998. http://en.scientificcommons.org/43006206 (accessed 5 Jan 2012).
    • (1998)
    • Fürnkranz, J.1
  • 30
    • 0003408420 scopus 로고    scopus 로고
    • Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond
    • MIT Press
    • Scholkopf B, Smola AJ. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2001:17.
    • (2001) , pp. 17
    • Scholkopf, B.1    Smola, A.J.2
  • 31
    • 84880882286 scopus 로고    scopus 로고
    • Weka (accessed 6 Apr 2011). 3, Data Mining Software
    • Weka 3: Data Mining Software. http://www.cs.waikato.ac.nz/ml/weka (accessed 6 Apr 2011).
  • 33
    • 0011312981 scopus 로고    scopus 로고
    • The NASA Aviation Safety Reporting System: lessons learned from voluntary incident reporting
    • Chicago: National Patient Safety Foundation
    • Billings CE. The NASA Aviation Safety Reporting System: lessons learned from voluntary incident reporting. In: Proceedings of Enhancing Patient Safety and Reducing Errors in Health Care. Chicago: National Patient Safety Foundation, 1999:97e100.
    • (1999) Proceedings of Enhancing Patient Safety and Reducing Errors in Health Care , pp. 97-100
    • Billings, C.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.