메뉴 건너뛰기




Volumn , Issue , 2012, Pages 62-73

Integrating historical noisy answers for improving data utility under differential privacy

Author keywords

differential privacy; private data analysis

Indexed keywords

CARDINALITIES; DATA UTILITIES; DIFFERENTIAL PRIVACIES; HIGH DIMENSIONAL DATA; HISTORICAL QUERIES; LARGE DOMAIN; PRINCIPLE COMPONENT ANALYSIS; PRIVACY PRESERVING; PRIVATE DATA; PRIVATE DATA ANALYSIS; RUNNING TIME; SYNTHETIC DATABASE;

EID: 84863530779     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2247596.2247605     Document Type: Conference Paper
Times cited : (5)

References (25)
  • 2
    • 35448955720 scopus 로고    scopus 로고
    • Privacy, accuracy, and consistency too: A holistic solution to contingency table release
    • B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In PODS, pages 273-282, 2007.
    • (2007) PODS , pp. 273-282
    • Barak, B.1    Chaudhuri, K.2    Dwork, C.3    Kale, S.4    McSherry, F.5    Talwar, K.6
  • 3
    • 0002652285 scopus 로고    scopus 로고
    • A maximum entropy approach to natural language processing
    • A. L. Berger, S. D. Pietra, and V. J. D. Pietra. A maximum entropy approach to natural language processing. Computational Linguistics, 22(1):39-71, 1996.
    • (1996) Computational Linguistics , vol.22 , Issue.1 , pp. 39-71
    • Berger, A.L.1    Pietra, S.D.2    Pietra, V.J.D.3
  • 4
    • 57049136138 scopus 로고    scopus 로고
    • A learning theory approach to non-interactive database privacy
    • A. Blum, K. Ligett, and A. Roth. A learning theory approach to non-interactive database privacy. In STOC, pages 609-618, 2008.
    • (2008) STOC , pp. 609-618
    • Blum, A.1    Ligett, K.2    Roth, A.3
  • 5
    • 84858769465 scopus 로고    scopus 로고
    • Privacy-preserving logistic regression
    • K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic regression. In NIPS, pages 289-296, 2008.
    • (2008) NIPS , pp. 289-296
    • Chaudhuri, K.1    Monteleoni, C.2
  • 8
    • 79959954388 scopus 로고    scopus 로고
    • Differentially private data cubes: Optimizing noise sources and consistency
    • B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private data cubes: optimizing noise sources and consistency. In SIGMOD Conference, pages 217-228, 2011.
    • (2011) SIGMOD Conference , pp. 217-228
    • Ding, B.1    Winslett, M.2    Han, J.3    Li, Z.4
  • 9
    • 33746037200 scopus 로고    scopus 로고
    • Our data, ourselves: Privacy via distributed noise generation
    • C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, pages 486-503, 2006.
    • (2006) EUROCRYPT , pp. 486-503
    • Dwork, C.1    Kenthapadi, K.2    McSherry, F.3    Mironov, I.4    Naor, M.5
  • 10
    • 33745556605 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, pages 265-284, 2006.
    • (2006) TCC , pp. 265-284
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 11
    • 70350689921 scopus 로고    scopus 로고
    • On the complexity of differentially private data release: Efficient algorithms and hardness results
    • C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. P. Vadhan. On the complexity of differentially private data release: efficient algorithms and hardness results. In STOC, pages 381-390, 2009.
    • (2009) STOC , pp. 381-390
    • Dwork, C.1    Naor, M.2    Reingold, O.3    Rothblum, G.N.4    Vadhan, S.P.5
  • 12
    • 77954735969 scopus 로고    scopus 로고
    • Universally optimal privacy mechanisms for minimax agents
    • M. Gupte and M. Sundararajan. Universally optimal privacy mechanisms for minimax agents. In PODS, pages 135-146, 2010.
    • (2010) PODS , pp. 135-146
    • Gupte, M.1    Sundararajan, M.2
  • 13
    • 78751489078 scopus 로고    scopus 로고
    • A multiplicative weights mechanism for privacy-preserving data analysis
    • M. Hardt and G. N. Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In FOCS, pages 61-70, 2010.
    • (2010) FOCS , pp. 61-70
    • Hardt, M.1    Rothblum, G.N.2
  • 14
    • 77954711905 scopus 로고    scopus 로고
    • On the geometry of differential privacy
    • M. Hardt and K. Talwar. On the geometry of differential privacy. In STOC, pages 705-714, 2010.
    • (2010) STOC , pp. 705-714
    • Hardt, M.1    Talwar, K.2
  • 15
    • 78650518102 scopus 로고    scopus 로고
    • Boosting the accuracy of differentially private histograms through consistency
    • M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of differentially private histograms through consistency. PVLDB, 3(1):1021-1032, 2010.
    • (2010) PVLDB , vol.3 , Issue.1 , pp. 1021-1032
    • Hay, M.1    Rastogi, V.2    Miklau, G.3    Suciu, D.4
  • 16
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282-289, 2001.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 17
    • 77954715960 scopus 로고    scopus 로고
    • Optimizing linear counting queries under differential privacy
    • C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing linear counting queries under differential privacy. In PODS, pages 123-134, 2010.
    • (2010) PODS , pp. 123-134
    • Li, C.1    Hay, M.2    Rastogi, V.3    Miklau, G.4    McGregor, A.5
  • 19
    • 46749128577 scopus 로고    scopus 로고
    • Mechanism design via differential privacy
    • F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, pages 94-103, 2007.
    • (2007) FOCS , pp. 94-103
    • McSherry, F.1    Talwar, K.2
  • 20
    • 34250642810 scopus 로고    scopus 로고
    • Privacy via pseudorandom sketches
    • N. Mishra and M. Sandler. Privacy via pseudorandom sketches. In PODS, pages 143-152, 2006.
    • (2006) PODS , pp. 143-152
    • Mishra, N.1    Sandler, M.2
  • 21
    • 35448955271 scopus 로고    scopus 로고
    • Smooth sensitivity and sampling in private data analysis
    • K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In STOC, pages 75-84, 2007.
    • (2007) STOC , pp. 75-84
    • Nissim, K.1    Raskhodnikova, S.2    Smith, A.3
  • 22
    • 77954745685 scopus 로고    scopus 로고
    • Interactive privacy via the median mechanism
    • A. Roth and T. Roughgarden. Interactive privacy via the median mechanism. In STOC, pages 765-774, 2010.
    • (2010) STOC , pp. 765-774
    • Roth, A.1    Roughgarden, T.2
  • 24
    • 79959998772 scopus 로고    scopus 로고
    • Ireduct: Differential privacy with reduced relative errors
    • X. Xiao, G. Bender, M. Hay, and J. Gehrke. ireduct: differential privacy with reduced relative errors. In SIGMOD Conference, pages 229-240, 2011.
    • (2011) SIGMOD Conference , pp. 229-240
    • Xiao, X.1    Bender, G.2    Hay, M.3    Gehrke, J.4
  • 25
    • 77952787160 scopus 로고    scopus 로고
    • Differential privacy via wavelet transforms
    • X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet transforms. In ICDE, pages 225-236, 2010.
    • (2010) ICDE , pp. 225-236
    • Xiao, X.1    Wang, G.2    Gehrke, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.