-
1
-
-
84860161802
-
Sketching valuation functions
-
BADANIDIYURU, A., DOBZINSKI, S., FU, H., KLEINBERG, R., NISAN, N., AND ROUGHGARDEN, T. 2012. Sketching valuation functions. In SODA. 1025-1035.
-
(2012)
SODA
, pp. 1025-1035
-
-
Badanidiyuru, A.1
Dobzinski, S.2
Fu, H.3
Kleinberg, R.4
Nisan, N.5
Roughgarden, T.6
-
3
-
-
77950889374
-
Item pricing for revenue maximization
-
BALCAN, M.-F., BLUM, A., AND MANSOUR, Y. 2008. Item pricing for revenue maximization. In EC.
-
(2008)
EC
-
-
Balcan, M.-F.1
Blum, A.2
Mansour, Y.3
-
4
-
-
85013990027
-
Incentive compatible multi unit combinatorial auctions
-
BARTAL, Y., GONEN, R., AND NISAN, N. 2003. Incentive compatible multi unit combinatorial auctions. In TARK.
-
(2003)
TARK
-
-
Bartal, Y.1
Gonen, R.2
Nisan, N.3
-
5
-
-
84863529386
-
-
CoRR abs/1107.2994
-
BEI, X., CHEN, N., GRAVIN, N., AND LU, P. 2011. Budget feasible mechanism design via random sampling. CoRR abs/1107.2994.
-
(2011)
Budget Feasible Mechanism Design Via Random Sampling
-
-
Bei, X.1
Chen, N.2
Gravin, N.3
Lu, P.4
-
6
-
-
84863502594
-
-
CoRR abs/1203.4455
-
BEI, X., CHEN, N., GRAVIN, N., AND LU, P. 2012. Budget feasible mechanism design: From prior-free to bayesian. CoRR abs/1203.4455.
-
(2012)
Budget Feasible Mechanism Design: From Prior-free to Bayesian
-
-
Bei, X.1
Chen, N.2
Gravin, N.3
Lu, P.4
-
7
-
-
84926088134
-
Combinatorial Auctions (a survey)
-
N. Nisan, T. Roughgarden, E. Tardos and V. Vazirani, editors
-
BLUMROSEN, L. AND NISAN, N. 2007. Combinatorial Auctions (a survey). In "Algorithmic Game Theory", N. Nisan, T. Roughgarden, E. Tardos and V. Vazirani, editors.
-
(2007)
Algorithmic Game Theory
-
-
Blumrosen, L.1
Nisan, N.2
-
8
-
-
70350140430
-
On the computational power of demand queries
-
BLUMROSEN, L. AND NISAN, N. 2009. On the computational power of demand queries. SIAM J. Comput. 39, 4, 1372-1391.
-
(2009)
SIAM J. Comput.
, vol.39
, Issue.4
, pp. 1372-1391
-
-
Blumrosen, L.1
Nisan, N.2
-
9
-
-
79959724727
-
Submodular function maximization via the multilinear relaxation and contention resolution schemes
-
CHEKURI, C., VONDRÁK, J., AND ZENKLUSEN, R. 2011. Submodular function maximization via the multilinear relaxation and contention resolution schemes. In STOC.
-
(2011)
STOC
-
-
Chekuri, C.1
Vondrák, J.2
Zenklusen, R.3
-
10
-
-
79955714045
-
On the approximability of budget feasible mechanisms
-
CHEN, N., GRAVIN, N., AND LU, P. 2011. On the approximability of budget feasible mechanisms. In SODA. 685-699.
-
(2011)
SODA
, pp. 685-699
-
-
Chen, N.1
Gravin, N.2
Lu, P.3
-
11
-
-
79959747287
-
An impossibility result for truthful combinatorial auctions with submodular valuations
-
DOBZINSKI, S. 2011. An impossibility result for truthful combinatorial auctions with submodular valuations. In STOC.
-
(2011)
STOC
-
-
Dobzinski, S.1
-
12
-
-
34848876979
-
Approximation algorithms for combinatorial auctions with complement-free bidders
-
DOBZINSKI, S., NISAN, N., AND SCHAPIRA, M. 2005. Approximation algorithms for combinatorial auctions with complement-free bidders. In STOC.
-
(2005)
STOC
-
-
Dobzinski, S.1
Nisan, N.2
Schapira, M.3
-
13
-
-
33748116693
-
Truthful randomized mechanisms for combinatorial auctions
-
DOBZINSKI, S., NISAN, N., AND SCHAPIRA, M. 2006. Truthful randomized mechanisms for combinatorial auctions. In STOC.
-
(2006)
STOC
-
-
Dobzinski, S.1
Nisan, N.2
Schapira, M.3
-
15
-
-
33244457832
-
An improved approximation algorithm for combinatorial auctions with submodular bidders
-
DOBZINSKI, S. AND SCHAPIRA, M. 2006. An improved approximation algorithm for combinatorial auctions with submodular bidders. In SODA.
-
(2006)
SODA
-
-
Dobzinski, S.1
Schapira, M.2
-
16
-
-
0032108328
-
A threshold of ln n for approximating set cover
-
FEIGE, U. 1998. A threshold of ln n for approximating set cover. Journal of the ACM 45, 4, 634-652.
-
(1998)
Journal of the ACM
, vol.45
, Issue.4
, pp. 634-652
-
-
Feige, U.1
-
17
-
-
33748101042
-
On maximizing welfare where the utility functions are subadditive
-
FEIGE, U. 2006. On maximizing welfare where the utility functions are subadditive. In STOC.
-
(2006)
STOC
-
-
Feige, U.1
-
18
-
-
38049051501
-
Approximation algorithms for allocation problems: Improving the factor of 1-1/e
-
FEIGE, U. AND VONDRÁK, J. 2006. Approximation algorithms for allocation problems: Improving the factor of 1-1/e. In FOCS.
-
(2006)
FOCS
-
-
Feige, U.1
Vondrák, J.2
-
19
-
-
0012523178
-
An analysis of approximations for maximizing submodular set functions - II
-
Springer Berlin Heidelberg
-
FISHER, M. L., NEMHAUSER, G. L., AND WOLSEY, L. A. 1978. An analysis of approximations for maximizing submodular set functions - ii. In Polyhedral Combinatorics. Mathematical Programming Studies Series, vol. 8. Springer Berlin Heidelberg, 73-87.
-
(1978)
Polyhedral Combinatorics. Mathematical Programming Studies Series
, vol.8
, pp. 73-87
-
-
Fisher, M.L.1
Nemhauser, G.L.2
Wolsey, L.A.3
-
20
-
-
79955724706
-
Submodular maximization by simulated annealing
-
GHARAN, S. O. AND VONDRÁK, J. 2011. Submodular maximization by simulated annealing. In SODA.
-
(2011)
SODA
-
-
Gharan, S.O.1
Vondrák, J.2
-
21
-
-
81855218421
-
Inapproximability results for combinatorial auctions with submodular utility functions
-
KHOT, S., LIPTON, R. J., MARKAKIS, E., AND MEHTA, A. 2005. Inapproximability results for combinatorial auctions with submodular utility functions. In WINE.
-
(2005)
WINE
-
-
Khot, S.1
Lipton, R.J.2
Markakis, E.3
Mehta, A.4
-
22
-
-
0032614948
-
The budgeted maximum coverage problem
-
KHULLER, S., MOSS, A., AND NAOR, J. 1999. The budgeted maximum coverage problem. Inf. Process. Lett. 70, 1, 39-45.
-
(1999)
Inf. Process. Lett.
, vol.70
, Issue.1
, pp. 39-45
-
-
Khuller, S.1
Moss, A.2
Naor, J.3
-
23
-
-
70349100783
-
Maximizing submodular set functions subject to multiple linear constraints
-
KULIK, A., SHACHNAI, H., AND TAMIR, T. 2009. Maximizing submodular set functions subject to multiple linear constraints. In SODA.
-
(2009)
SODA
-
-
Kulik, A.1
Shachnai, H.2
Tamir, T.3
-
25
-
-
78649524291
-
More on the power of demand queries in combinatorial auctions: Learning atomic languages and handling incentives
-
LAHAIE, S., CONSTANTIN, F., AND PARKES, D. C. 2005. More on the power of demand queries in combinatorial auctions: Learning atomic languages and handling incentives. In IJCAI.
-
(2005)
IJCAI
-
-
Lahaie, S.1
Constantin, F.2
Parkes, D.C.3
-
26
-
-
33748120378
-
Truthful and near-optimal mechanism design via linear programming
-
LAVI, R. AND SWAMY, C. 2005. Truthful and near-optimal mechanism design via linear programming. In FOCS.
-
(2005)
FOCS
-
-
Lavi, R.1
Swamy, C.2
-
27
-
-
70350683773
-
Non-monotone submodular maximization under matroid and knapsack constraints
-
LEE, J., MIRROKNI, V. S., NAGARAJAN, V., AND SVIRIDENKO, M. 2009. Non-monotone submodular maximization under matroid and knapsack constraints. In STOC.
-
(2009)
STOC
-
-
Lee, J.1
Mirrokni, V.S.2
Nagarajan, V.3
Sviridenko, M.4
-
28
-
-
0011986321
-
Combinatorial auctions with decreasing marginal utilities
-
LEHMANN, B., LEHMANN, D., AND NISAN, N. 2001. Combinatorial auctions with decreasing marginal utilities. In EC.
-
(2001)
EC
-
-
Lehmann, B.1
Lehmann, D.2
Nisan, N.3
-
29
-
-
0010814278
-
Best algorithms for approximating the maximum of a submodular set function
-
NEMHAUSER, G. L. AND WOLSEY, L. A. Best algorithms for approximating the maximum of a submodular set function. Mathematics of Operations Research 3, 3, 177-188.
-
Mathematics of Operations Research
, vol.3
, Issue.3
, pp. 177-188
-
-
Nemhauser, G.L.1
Wolsey, L.A.2
-
30
-
-
32144439548
-
Exponential communication inefficiency of demand queries
-
NISAN, N. AND SEGAL, I. 2005. Exponential communication inefficiency of demand queries. In TARK.
-
(2005)
TARK
-
-
Nisan, N.1
Segal, I.2
-
31
-
-
33846836951
-
Preference Elicitation in Combinatorial Auctions
-
P. Cramton and Y. Shoham and R. Steinberg, editors
-
SANDHOLM, T. AND BOUTILIER, C. 2006. Preference Elicitation in Combinatorial Auctions. In "Combinatorial Auctions", P. Cramton and Y. Shoham and R. Steinberg, editors.
-
(2006)
Combinatorial Auctions
-
-
Sandholm, T.1
Boutilier, C.2
-
32
-
-
78751557867
-
Budget feasible mechanisms
-
SINGER, Y. 2010. Budget feasible mechanisms. In FOCS.
-
(2010)
FOCS
-
-
Singer, Y.1
-
33
-
-
0142029543
-
A note on maximizing a submodular set function subject to a knapsack constraint
-
SVIRIDENKO, M. 2004. A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32, 1, 41-43.
-
(2004)
Oper. Res. Lett.
, vol.32
, Issue.1
, pp. 41-43
-
-
Sviridenko, M.1
-
34
-
-
57049187237
-
Optimal approximation for the submodular welfare problem in the value oracle model
-
VONDRÁK, J. 2008. Optimal approximation for the submodular welfare problem in the value oracle model. In STOC.
-
(2008)
STOC
-
-
Vondrák, J.1
|