-
1
-
-
84863473237
-
-
accessed: August 27, 2011
-
Google safe browsing api, http://code.google.com/apis/safebrowsing/ (accessed: August 27, 2011)
-
Google Safe Browsing Api
-
-
-
2
-
-
84863501402
-
-
accessed: April 15, 2012
-
The list of email spam trigger words, http://blog.hubspot.com/blog/tabid/ 6307/bid/30684/The-Ultimate-List-of-Email-SPAM-Trigger-Words.aspx (accessed: April 15, 2012)
-
The List of Email Spam Trigger Words
-
-
-
4
-
-
84863436348
-
-
accessed: September 2, 2011
-
Senseclusters, http://senseclusters.sourceforge.net/ (accessed: September 2, 2011)
-
Senseclusters
-
-
-
5
-
-
84960964318
-
-
accessed: April 15, 2012
-
Spam words by wordpress, http://codex.wordpress.org/Spam-Words (accessed: April 15, 2012)
-
Spam Words by Wordpress
-
-
-
6
-
-
84863498443
-
-
The spamhaus project, accessed: August 27, 2011
-
The spamhaus project, http://www.spamhaus.org/ (accessed: August 27, 2011)
-
-
-
-
7
-
-
84863498442
-
-
accessed: August 27, 2011
-
Surbl, http://www.surbl.org/lists (accessed: August 27, 2011)
-
-
-
-
9
-
-
84857172422
-
-
accessed: August 17, 2011
-
Twitter blog: Your world, more connected, http://blog.twitter.com/2011/ 08/your-world-more-connected.html (accessed: August 17, 2011)
-
Your World, More Connected
-
-
-
10
-
-
84863433041
-
-
accessed: August 30, 2011
-
Twitter rest api resources, https://dev.twitter.com/docs/api (accessed: August 30, 2011)
-
Twitter Rest Api Resources
-
-
-
11
-
-
84893527887
-
-
accessed: August 17, 2011
-
The twitter rules, http://support.twitter.com/entries/18311-the-twitter- rules (accessed: August 17, 2011)
-
The Twitter Rules
-
-
-
12
-
-
84863501403
-
-
accessed: August 30, 2011
-
Twitter's streaming api documentation, https://dev.twitter.com/docs/ streaming-api (accessed: August 30, 2011)
-
Twitter's Streaming Api Documentation
-
-
-
14
-
-
84863498444
-
-
accessed: August 30, 2011
-
Using the twitter search api, https://dev.twitter.com/docs/using-search (accessed: August 30, 2011)
-
Using the Twitter Search Api
-
-
-
16
-
-
84860848688
-
Detecting spammers on twitter
-
Benevenuto, F., Magno, G., Rodrigues, T., Almeida, V.: Detecting spammers on twitter. In: Proceedings of the CEAS 2010 (2010)
-
Proceedings of the CEAS 2010 (2010)
-
-
Benevenuto, F.1
Magno, G.2
Rodrigues, T.3
Almeida, V.4
-
17
-
-
0035478854
-
Random forests
-
Breiman, L.: Random forests. Machine Learning 45, 5-32 (2001)
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
18
-
-
78751493674
-
Who is tweeting on twitter: Human, bot or cyborg?
-
Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Who is tweeting on twitter: human, bot or cyborg? In: Proceedings of the 2010 Annual Computer Security Applications Conference, Austin, TX, USA (2010)
-
Proceedings of the 2010 Annual Computer Security Applications Conference, Austin, TX, USA (2010)
-
-
Chu, Z.1
Gianvecchio, S.2
Wang, H.3
Jajodia, S.4
-
20
-
-
78650880229
-
Detecting and characterizing social spam campaigns
-
Gao, H., Hu, J., Wilson, C., Li, Z., Chen, Y., Zhao, B.Y.: Detecting and characterizing social spam campaigns. In: Proceedings of the 10th Annual Conference on Internet Measurement, pp. 35-47 (2010)
-
(2010)
Proceedings of the 10th Annual Conference on Internet Measurement
, pp. 35-47
-
-
Gao, H.1
Hu, J.2
Wilson, C.3
Li, Z.4
Chen, Y.5
Zhao, B.Y.6
-
21
-
-
78650005374
-
@spam: The underground on 140 characters or less
-
Grier, C., Thomas, K., Paxson, V., Zhang, M.: @spam: the underground on 140 characters or less. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 27-37 (2010)
-
(2010)
Proceedings of the 17th ACM Conference on Computer and Communications Security
, pp. 27-37
-
-
Grier, C.1
Thomas, K.2
Paxson, V.3
Zhang, M.4
-
22
-
-
76749092270
-
The weka data mining software: An update
-
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10-18 (2009)
-
(2009)
SIGKDD Explor. Newsl.
, vol.11
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
24
-
-
70149106104
-
Spamalytics: An empirical analysis of spam marketing conversion
-
Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G.M., Paxson, V., Savage, S.: Spamalytics: an empirical analysis of spam marketing conversion. Commun. ACM 52, 99-107 (2009)
-
(2009)
Commun. ACM
, vol.52
, pp. 99-107
-
-
Kanich, C.1
Kreibich, C.2
Levchenko, K.3
Enright, B.4
Voelker, G.M.5
Paxson, V.6
Savage, S.7
-
27
-
-
34250653315
-
Detecting spam web pages through content analysis
-
Ntoulas, A., Najork, M., Manasse, M., Fetterly, D.: Detecting spam web pages through content analysis. In: Proceedings of the 15th International Conference on World Wide Web, pp. 83-92 (2006)
-
(2006)
Proceedings of the 15th International Conference on World Wide Web
, pp. 83-92
-
-
Ntoulas, A.1
Najork, M.2
Manasse, M.3
Fetterly, D.4
-
28
-
-
78049378934
-
Computational approaches to measuring the similarity of short contexts: A review of applications and methods
-
abs/0806.3787
-
Pedersen, T.: Computational approaches to measuring the similarity of short contexts: A review of applications and methods. CoRR, abs/0806.3787 (2008)
-
(2008)
CoRR
-
-
Pedersen, T.1
-
29
-
-
0016572913
-
A vector space model for automatic indexing
-
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18, 613-620 (1975)
-
(1975)
Commun. ACM
, vol.18
, pp. 613-620
-
-
Salton, G.1
Wong, A.2
Yang, C.S.3
-
31
-
-
34547336772
-
An effective defense against email spam laundering
-
Xie, M., Yin, H., Wang, H.: An effective defense against email spam laundering. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 179-190 (2006)
-
(2006)
Proceedings of the 13th ACM Conference on Computer and Communications Security
, pp. 179-190
-
-
Xie, M.1
Yin, H.2
Wang, H.3
|