메뉴 건너뛰기




Volumn , Issue , 2009, Pages 625-632

Learning hybrid models for image annotation with partially labeled data

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE ANALYSIS;

EID: 84863400534     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (44)

References (18)
  • 1
    • 38349091259 scopus 로고    scopus 로고
    • Maximum margin semi-supervised learning for structured variables
    • Yasemin Altun, David McAllester, and Mikhail Belkin. Maximum margin semi-supervised learning for structured variables. In NIPS 18, 2006.
    • (2006) NIPS , vol.18
    • Altun, Y.1    McAllester, D.2    Belkin, M.3
  • 2
    • 85161981998 scopus 로고    scopus 로고
    • Supervised topic models
    • David Blei and Jon McAuliffe. Supervised topic models. In NIPS 20, 2008.
    • (2008) NIPS , vol.20
    • Blei, D.1    McAuliffe, J.2
  • 4
    • 5044223520 scopus 로고    scopus 로고
    • Multiscale conditional random fields for image labelling
    • Xuming He, Richard Zemel, and Miguel Carreira-Perpinan. Multiscale conditional random fields for image labelling. In CVPR, 2004.
    • (2004) CVPR
    • He, X.1    Zemel, R.2    Carreira-Perpinan, M.3
  • 5
    • 34948885292 scopus 로고    scopus 로고
    • Learning and incorporating top-down cues in image segmentation
    • Xuming He, Richard S. Zemel, and Debajyoti Ray. Learning and incorporating top-down cues in image segmentation. In ECCV, 2006.
    • (2006) ECCV
    • He, X.1    Zemel, R.S.2    Ray, D.3
  • 6
    • 34047204042 scopus 로고    scopus 로고
    • Combining generative and discriminative methods for pixel classification with multi-conditional learning
    • Michael Kelm, Chris Pal, and Andrew McCallum. Combining generative and discriminative methods for pixel classification with multi-conditional learning. In ICPR, 2006.
    • (2006) ICPR
    • Kelm, M.1    Pal, C.2    McCallum, A.3
  • 7
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification
    • Sanjiv Kumar and Martial Hebert. Discriminative random fields: A discriminative framework for contextual interaction in classification. In ICCV, 2003.
    • (2003) ICCV
    • Kumar, S.1    Hebert, M.2
  • 8
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • John Lafferty, AndrewMcCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282-289, 2001.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 9
    • 33845597672 scopus 로고    scopus 로고
    • Principled hybrids of generative and discriminative models
    • Julia A. Lasserre, Christopher M. Bishop, and Thomas P. Minka. Principled hybrids of generative and discriminative models. In CVPR, 2006.
    • (2006) CVPR
    • Lasserre, J.A.1    Bishop, C.M.2    Minka, T.P.3
  • 10
    • 84864032258 scopus 로고    scopus 로고
    • Learning to model spatial dependency: Semi-supervised discriminative random fields
    • Chi-Hoon Lee, Shaojun Wang, Feng Jiao, Dale Schuurmans, and Russell Greiner. Learning to model spatial dependency: Semi-supervised discriminative random fields. In NIPS 19, 2007.
    • (2007) NIPS , vol.19
    • Lee, C.-H.1    Wang, S.2    Jiao, F.3    Schuurmans, D.4    Greiner, R.5
  • 11
    • 85162028642 scopus 로고    scopus 로고
    • Efficient unsupervised learning for localization and detection in object categories
    • Nicolas Loeff, Himanshu Arora, Alexander Sorokin, and David Forsyth. Efficient unsupervised learning for localization and detection in object categories. In NIPS, 2006.
    • (2006) NIPS
    • Loeff, N.1    Arora, H.2    Sorokin, A.3    Forsyth, D.4
  • 13
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans. PAMI, 2000.
    • (2000) IEEE Trans. PAMI
    • Shi, J.1    Malik, J.2
  • 14
    • 33845423382 scopus 로고    scopus 로고
    • Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation
    • Jamie Shotton, John M. Winn, Carsten Rother, and Antonio Criminisi. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In ECCV, 2006.
    • (2006) ECCV
    • Shotton, J.1    Winn, J.M.2    Rother, C.3    Criminisi, A.4
  • 15
    • 34948814611 scopus 로고    scopus 로고
    • Region classification with markov field aspect models
    • Jakob Verbeek and Bill Triggs. Region classification with markov field aspect models. In CVPR, 2007.
    • (2007) CVPR
    • Verbeek, J.1    Triggs, B.2
  • 16
    • 58349114205 scopus 로고    scopus 로고
    • Scene segmentation with CRFs learned from partially labeled images
    • Jakob Verbeek and Bill Triggs. Scene segmentation with CRFs learned from partially labeled images. In NIPS 20, 2008.
    • (2008) NIPS , vol.20
    • Verbeek, J.1    Triggs, B.2
  • 17
    • 33845591067 scopus 로고    scopus 로고
    • Using dependent regions for object categorization in a generative framework
    • Gang Wang, Ye Zhang, and Li Fei-Fei. Using dependent regions for object categorization in a generative framework. In CVPR, 2006.
    • (2006) CVPR
    • Gang, W.1    Ye, Z.2    Li, F.-F.3
  • 18
    • 85161989873 scopus 로고    scopus 로고
    • Spatial latent Dirichlet allocation
    • Xiaogang Wang and Eric Grimson. Spatial latent Dirichlet allocation. In NIPS, 2008.
    • (2008) NIPS
    • Wang, X.1    Grimson, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.