-
1
-
-
0001025418
-
Bayesian interpolation
-
D. MacKay, "Bayesian Interpolation," Neural Computation, vol. 4, no. 3, pp. 415-447, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.3
, pp. 415-447
-
-
MacKay, D.1
-
2
-
-
33745847556
-
Learning nonlinear manifolds from time series
-
Computer Vision - ECCV 2006, 9th European Conference on Computer Vision, Proceedings
-
R.-S. Lin, C.-B. Liu, M.-H. Yang, N. Ahuja, and S. Levinson, "Learning Nonlinear Manifolds from Time Series," Proc. European Conf. Computer Vision, pp. 245-256, 2006. (Pubitemid 44029731)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.LNCS 3952
, pp. 245-256
-
-
Lin, R.-S.1
Liu, C.-B.2
Yang, M.-H.3
Ahuja, N.4
Levinson, S.5
-
3
-
-
0007994116
-
Learning swtiching linear models of human motion
-
V. Pavlovic, J. Rehg, and J. MacCormick, "Learning Swtiching Linear Models of Human Motion," Proc. Advances in Neural Information Processing Systems, pp. 981-987, 2000.
-
(2000)
Proc. Advances in Neural Information Processing Systems
, pp. 981-987
-
-
Pavlovic, V.1
Rehg, J.2
MacCormick, J.3
-
4
-
-
84863420666
-
-
http://www.cwi.nl/projects/dyntex/, 2011.
-
(2011)
-
-
-
5
-
-
36348977424
-
HumanEva: Synchronized video and motion capture dataset for evaluation of articulated human motion
-
Brown Univ.
-
L. Sigal and M. Black, "HumanEva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion," Technical Report CS-06-08, Brown Univ., 2006.
-
(2006)
Technical Report CS-06-08
-
-
Sigal, L.1
Black, M.2
-
6
-
-
0142035471
-
Global coordination of local linear models
-
S. Roweis, L. Saul, and G. Hinton, "Global Coordination of Local Linear Models," Proc. Advances in Neural Information Processing Systems, vol. 14, pp. 889-896, 2001.
-
(2001)
Proc. Advances in Neural Information Processing Systems
, vol.14
, pp. 889-896
-
-
Roweis, S.1
Saul, L.2
Hinton, G.3
-
7
-
-
33748149588
-
Learning nonlinear image manifolds by global alignment of local linear models
-
DOI 10.1109/TPAMI.2006.166
-
J. Verbeek, "Learning Non-Linear Image Manifolds by Combining Local Linear Models," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 8, pp. 1236-1250, Aug. 2006. (Pubitemid 46405022)
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.8
, pp. 1236-1250
-
-
Verbeek, J.1
-
9
-
-
34250232348
-
EM algorithm for ML factor analysis
-
D. Rubin and D. Thayer, "EM Algorithm for ML Factor Analysis," Psychmetrika, vol. 47, no. 1, pp. 69-76, 1982.
-
(1982)
Psychmetrika
, vol.47
, Issue.1
, pp. 69-76
-
-
Rubin, D.1
Thayer, D.2
-
11
-
-
0000860415
-
Markov chain monte carlo model determination for hierarchical and graphical log-linear models
-
P. Dellaportas and J. Forster, "Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Log-Linear Models," Biometrika, vol. 86, pp. 615-633, 1996.
-
(1996)
Biometrika
, vol.86
, pp. 615-633
-
-
Dellaportas, P.1
Forster, J.2
-
13
-
-
0029272806
-
Free energy minimization algorithm for decoding and cryptanalysis
-
D. MacKay, "Free Energy Minimization Algorithm for Decoding and Cryptanalysis," Electronics Letters, vol. 31, no. 6, pp. 446-447, 1995.
-
(1995)
Electronics Letters
, vol.31
, Issue.6
, pp. 446-447
-
-
MacKay, D.1
-
15
-
-
84863400580
-
-
http://www.variational-bayes.org/vbpapers.html, 2011.
-
(2011)
-
-
-
20
-
-
84898936541
-
The infinite hidden markov models
-
M. Beal, Z. Ghahramani, and C. Rasmussen, "The Infinite Hidden Markov Models," Proc. Advances in Neural Information Processing Systems, pp. 577-585, 2002.
-
(2002)
Proc. Advances in Neural Information Processing Systems
, pp. 577-585
-
-
Beal, M.1
Ghahramani, Z.2
Rasmussen, C.3
-
23
-
-
0002049440
-
Learning dynamic bayesian networks
-
Adaptive Processing of Sequences and Data Structures
-
Z. Ghahramani, "Learning Dynamic Bayesian Networks," Proc. Adaptive Processing of Sequences and Data Structures, pp. 168-197, 1998. (Pubitemid 128056031)
-
(1998)
Lecture Notes in Computer Science
, Issue.1387
, pp. 168-197
-
-
Ghahramani, Z.1
-
24
-
-
33745868742
-
Monocular tracking of 3D human motion with a coordinated mixture of factor analyzers
-
Computer Vision - ECCV 2006, 9th European Conference on Computer Vision, Proceedings
-
R. Li, M.-H. Yang, S. Sclaroff, and T.-P. Tian, "Monocular Tracking of 3D Human Motion with a Coordinated Mixture of Factor Analyzers," Proc. European Conf. Computer Vision, pp. 137-150, 2006. (Pubitemid 44029723)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.LNCS 3952
, pp. 137-150
-
-
Li, R.1
Yang, M.-H.2
Sclaroff, S.3
Tian, T.-P.4
-
25
-
-
21644483999
-
Maximum likelihood estimates of linear dynamic systems
-
H. Rauch, F. Tung, and C. Striebel, "Maximum Likelihood Estimates of Linear Dynamic Systems," Am. Inst. of Aeronautics and Astronautics J., vol. 3, no. 8, pp. 1445-1450, 1965.
-
(1965)
Am. Inst. of Aeronautics and Astronautics J.
, vol.3
, Issue.8
, pp. 1445-1450
-
-
Rauch, H.1
Tung, F.2
Striebel, C.3
-
26
-
-
0022594196
-
An introduction to hidden markov models
-
Jan.
-
L. Rabiner and B. Juang, "An Introduction to Hidden Markov Models," IEEE ASSP Magazine, vol. 3, no. 1, pp. 4-16, Jan. 1986.
-
(1986)
IEEE ASSP Magazine
, vol.3
, Issue.1
, pp. 4-16
-
-
Rabiner, L.1
Juang, B.2
-
29
-
-
84863414955
-
A variational inference method for switching linear dynamic system
-
Georgia Inst. of Technology
-
S.-M. Oh, A. Ranganathan, J. Rehg, and F. Dellaert, "A Variational Inference Method for Switching Linear Dynamic System," Technical Report GIT-GVU-05-16, Georgia Inst. of Technology, 2005.
-
(2005)
Technical Report GIT-GVU-05-16
-
-
Oh, S.-M.1
Ranganathan, A.2
Rehg, J.3
Dellaert, F.4
-
30
-
-
36048964972
-
Learning to transform time series with a few examples
-
Oct.
-
A. Rahimi, B. Recht, and T. Darrell, "Learning to Transform Time Series with a Few Examples," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 10, pp. 1759-1775, Oct. 2007.
-
(2007)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.29
, Issue.10
, pp. 1759-1775
-
-
Rahimi, A.1
Recht, B.2
Darrell, T.3
-
31
-
-
33745936375
-
Generative modeling for continuous non-linearly embedded visual inference
-
C. Sminchisescu and A. Jepson, "Generative Modeling for Continuous Non-Linearly Embedded Visual Inference," Proc. IEEE Int'l Conf. Machine Learning, pp. 96-103, 2004.
-
(2004)
Proc. IEEE Int'l Conf. Machine Learning
, pp. 96-103
-
-
Sminchisescu, C.1
Jepson, A.2
-
33
-
-
84862287133
-
Fast state discovery for HMM model selection and learning
-
S. Siddiqi, G. Gordon, and A. Moore, "Fast State Discovery for HMM Model Selection and Learning," Proc. 11th Int'l Conf. Artificial Intelligence and Statistics, pp. 492-499, 2007.
-
(2007)
Proc. 11th Int'l Conf. Artificial Intelligence and Statistics
, pp. 492-499
-
-
Siddiqi, S.1
Gordon, G.2
Moore, A.3
-
34
-
-
0029745231
-
Maximum likelihood successive state splitting
-
H. Singer and M. Ostendorf, "Maximum Likelihood Successive State Splitting," Proc. Int'l Conf. Acoustics, Speech, and Signal Processing, pp. 1890-1897, 1996.
-
(1996)
Proc. Int'l Conf. Acoustics, Speech, and Signal Processing
, pp. 1890-1897
-
-
Singer, H.1
Ostendorf, M.2
-
35
-
-
85013744934
-
A successive state splitting algorithm for efficient allophone modeling
-
J. Takami and S. Sagayama, "A Successive State Splitting Algorithm for Efficient Allophone Modeling," Proc. Int'l Conf. Acoustics, Speech, and Signal Processing, pp. 573-576, 1992.
-
(1992)
Proc. Int'l Conf. Acoustics, Speech, and Signal Processing
, pp. 573-576
-
-
Takami, J.1
Sagayama, S.2
-
37
-
-
84863403200
-
-
http://mocap.cs.cmu.edu/, 2011.
-
(2011)
-
-
-
39
-
-
12844276276
-
Style-based inverse kinematics
-
K. Grochow, S. Martin, A. Hertzman, and Z. Popovic, "Style-Based Inverse Kinematics," ACM Trans. Graphics, vol. 23, pp. 522-531, 2004.
-
(2004)
ACM Trans. Graphics
, vol.23
, pp. 522-531
-
-
Grochow, K.1
Martin, S.2
Hertzman, A.3
Popovic, Z.4
-
40
-
-
85114741788
-
Articulated pose estimation in a learned smooth space of feasible solutions
-
T.-P. Tian, R. Li, and S. Sclaroff, "Articulated Pose Estimation in a Learned Smooth Space of Feasible Solutions," Proc. IEEE CS Computer Vision and Pattern Recognition Learning Workshop, pp. 50-57, 2005.
-
(2005)
Proc. IEEE CS Computer Vision and Pattern Recognition Learning Workshop
, pp. 50-57
-
-
Tian, T.-P.1
Li, R.2
Sclaroff, S.3
-
41
-
-
33745823422
-
Priors for people tracking from small training sets
-
DOI 10.1109/ICCV.2005.193, 1541284, Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005
-
R. Urtasun, D. Fleet, A. Hertzman, and P. Fua, "Priors for People Tracking From Small Training Sets," Proc. IEEE Int'l Conf. Computer Vision, pp. 403-410, 2005. (Pubitemid 44054986)
-
(2005)
Proceedings of the IEEE International Conference on Computer Vision
, vol.I
, pp. 403-410
-
-
Urtasun, R.1
Fleet, D.J.2
Hertzmann, A.3
Fua, P.4
-
44
-
-
0035365177
-
Temporal Kohonen map and the recurrent self-organizing map: Analytical and experimental comparison
-
DOI 10.1023/A:1011353011837
-
M. Varsta, J. Heikkonen, J. Lampinen, and J. Milln, "Temporal Kohonen Map and the Recurrent Self-Organizing Map: Analytical and Experimental Comparison," Neural Processing Letters, vol. 13, no. 3, pp. 237-251, 2001. (Pubitemid 32594387)
-
(2001)
Neural Processing Letters
, vol.13
, Issue.3
, pp. 237-251
-
-
Varsta, M.1
Heikkonen, J.2
Lampinen, J.3
Millan, J.D.R.4
-
45
-
-
36348956872
-
A spatio-temporal extension to isomap nonlinear dimension reduction
-
O. Jenkins and M. Matarič, "A Spatio-Temporal Extension to Isomap Nonlinear Dimension Reduction," Proc. IEEE Int'l Conf. Machine Learning, pp. 56-63, 2004.
-
(2004)
Proc. IEEE Int'l Conf. Machine Learning
, pp. 56-63
-
-
Jenkins, O.1
Matarič, M.2
-
46
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
DOI 10.1126/science.290.5500.2319
-
J. Tenenbaum, V. Silva, and J. Langford, "A Global Geometric Framework for Nonlinear Dimensionality Reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000. (Pubitemid 32041577)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
47
-
-
33845594952
-
Impact of dynamics on subspace embedding and tracking of sequences
-
DOI 10.1109/CVPR.2006.148, 1640760, Proceedings - 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
-
K. Moon and V. Pavlovic, "Impact of Dynamics on Subspace Embedding and Tracking of Sequences," Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 198-205, 2006. (Pubitemid 44931331)
-
(2006)
Proceedings - 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2006
, vol.1
, pp. 198-205
-
-
Moon, K.1
Pavlovic, V.2
-
48
-
-
37549055132
-
Gaussian process and dynamical models for human motion
-
Feb.
-
J. Wang, D. Fleet, and A. Hertzman, "Gaussian Process and Dynamical Models for Human Motion," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 283-298, Feb. 2008.
-
(2008)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.30
, Issue.2
, pp. 283-298
-
-
Wang, J.1
Fleet, D.2
Hertzman, A.3
-
49
-
-
84898980901
-
Gaussian process latent variable models for visualization of high dimensional data
-
N. Lawrence, "Gaussian Process Latent Variable Models for Visualization of High Dimensional Data," Proc. Advances in Neural Information Processing Systems, vol. 16, pp. 329-336, 2004.
-
(2004)
Proc. Advances in Neural Information Processing Systems
, vol.16
, pp. 329-336
-
-
Lawrence, N.1
-
51
-
-
34547979938
-
Multifactor gaussian process models for style-content separation
-
J. Wang, D. Fleet, and A. Hertzmann, "Multifactor Gaussian Process Models for Style-Content Separation," Proc. IEEE Int'l Conf. Machine Learning, pp. 975-982, 2007.
-
(2007)
Proc. IEEE Int'l Conf. Machine Learning
, pp. 975-982
-
-
Wang, J.1
Fleet, D.2
Hertzmann, A.3
-
52
-
-
34547977917
-
Hierarchical gaussian process latent variable models
-
N. Lawrence and A. Moore, "Hierarchical Gaussian Process Latent Variable Models," Proc. IEEE Int'l Conf. Machine Learning, vol. 227, pp. 481-488, 2007.
-
(2007)
Proc. IEEE Int'l Conf. Machine Learning
, vol.227
, pp. 481-488
-
-
Lawrence, N.1
Moore, A.2
-
53
-
-
79955836081
-
Two distributed-state models for generating high-dimensional time series
-
G. Taylor, G. Hinton, and S. Roweis, "Two Distributed-State Models for Generating High-Dimensional Time Series," J. Machine Learning Research, vol. 12, pp. 1025-1068, 2011.
-
(2011)
J. Machine Learning Research
, vol.12
, pp. 1025-1068
-
-
Taylor, G.1
Hinton, G.2
Roweis, S.3
-
54
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
DOI 10.1109/CVPR.2005.177, 1467360, Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
-
N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection," Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 886-893, 2005. (Pubitemid 43897286)
-
(2005)
Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
, vol.I
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
55
-
-
5044236234
-
Tracking loose-limbed people
-
L. Sigal, S. Bhatia, S. Roth, M. Black, and M. Isard, "Tracking Loose-Limbed People," Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 421-428, 2004.
-
(2004)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
, pp. 421-428
-
-
Sigal, L.1
Bhatia, S.2
Roth, S.3
Black, M.4
Isard, M.5
-
56
-
-
0142134976
-
Robust on-line appearance models for vision tracking
-
Oct.
-
A. Jepson, D. Fleet, and T. El-Maraghi, "Robust On-Line Appearance Models for Vision Tracking," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1296-1311, Oct. 2003.
-
(2003)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.25
, Issue.10
, pp. 1296-1311
-
-
Jepson, A.1
Fleet, D.2
El-Maraghi, T.3
|