메뉴 건너뛰기




Volumn 34, Issue 4, 2012, Pages 654-669

Divide, conquer and coordinate: Globally coordinated switching linear dynamical system

Author keywords

Bayesian learning; dynamic texture; human motion; nonlinear dynamical model; nonlinear manifold

Indexed keywords

BAYESIAN LEARNING; DYNAMIC TEXTURES; HUMAN MOTIONS; NONLINEAR DYNAMICAL MODELS; NONLINEAR MANIFOLDS;

EID: 84863394448     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2011.152     Document Type: Article
Times cited : (18)

References (56)
  • 1
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. MacKay, "Bayesian Interpolation," Neural Computation, vol. 4, no. 3, pp. 415-447, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.1
  • 4
    • 84863420666 scopus 로고    scopus 로고
    • http://www.cwi.nl/projects/dyntex/, 2011.
    • (2011)
  • 5
    • 36348977424 scopus 로고    scopus 로고
    • HumanEva: Synchronized video and motion capture dataset for evaluation of articulated human motion
    • Brown Univ.
    • L. Sigal and M. Black, "HumanEva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion," Technical Report CS-06-08, Brown Univ., 2006.
    • (2006) Technical Report CS-06-08
    • Sigal, L.1    Black, M.2
  • 7
    • 33748149588 scopus 로고    scopus 로고
    • Learning nonlinear image manifolds by global alignment of local linear models
    • DOI 10.1109/TPAMI.2006.166
    • J. Verbeek, "Learning Non-Linear Image Manifolds by Combining Local Linear Models," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 8, pp. 1236-1250, Aug. 2006. (Pubitemid 46405022)
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.8 , pp. 1236-1250
    • Verbeek, J.1
  • 9
    • 34250232348 scopus 로고
    • EM algorithm for ML factor analysis
    • D. Rubin and D. Thayer, "EM Algorithm for ML Factor Analysis," Psychmetrika, vol. 47, no. 1, pp. 69-76, 1982.
    • (1982) Psychmetrika , vol.47 , Issue.1 , pp. 69-76
    • Rubin, D.1    Thayer, D.2
  • 11
    • 0000860415 scopus 로고    scopus 로고
    • Markov chain monte carlo model determination for hierarchical and graphical log-linear models
    • P. Dellaportas and J. Forster, "Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Log-Linear Models," Biometrika, vol. 86, pp. 615-633, 1996.
    • (1996) Biometrika , vol.86 , pp. 615-633
    • Dellaportas, P.1    Forster, J.2
  • 13
    • 0029272806 scopus 로고
    • Free energy minimization algorithm for decoding and cryptanalysis
    • D. MacKay, "Free Energy Minimization Algorithm for Decoding and Cryptanalysis," Electronics Letters, vol. 31, no. 6, pp. 446-447, 1995.
    • (1995) Electronics Letters , vol.31 , Issue.6 , pp. 446-447
    • MacKay, D.1
  • 15
    • 84863400580 scopus 로고    scopus 로고
    • http://www.variational-bayes.org/vbpapers.html, 2011.
    • (2011)
  • 23
    • 0002049440 scopus 로고    scopus 로고
    • Learning dynamic bayesian networks
    • Adaptive Processing of Sequences and Data Structures
    • Z. Ghahramani, "Learning Dynamic Bayesian Networks," Proc. Adaptive Processing of Sequences and Data Structures, pp. 168-197, 1998. (Pubitemid 128056031)
    • (1998) Lecture Notes in Computer Science , Issue.1387 , pp. 168-197
    • Ghahramani, Z.1
  • 26
    • 0022594196 scopus 로고
    • An introduction to hidden markov models
    • Jan.
    • L. Rabiner and B. Juang, "An Introduction to Hidden Markov Models," IEEE ASSP Magazine, vol. 3, no. 1, pp. 4-16, Jan. 1986.
    • (1986) IEEE ASSP Magazine , vol.3 , Issue.1 , pp. 4-16
    • Rabiner, L.1    Juang, B.2
  • 29
    • 84863414955 scopus 로고    scopus 로고
    • A variational inference method for switching linear dynamic system
    • Georgia Inst. of Technology
    • S.-M. Oh, A. Ranganathan, J. Rehg, and F. Dellaert, "A Variational Inference Method for Switching Linear Dynamic System," Technical Report GIT-GVU-05-16, Georgia Inst. of Technology, 2005.
    • (2005) Technical Report GIT-GVU-05-16
    • Oh, S.-M.1    Ranganathan, A.2    Rehg, J.3    Dellaert, F.4
  • 31
    • 33745936375 scopus 로고    scopus 로고
    • Generative modeling for continuous non-linearly embedded visual inference
    • C. Sminchisescu and A. Jepson, "Generative Modeling for Continuous Non-Linearly Embedded Visual Inference," Proc. IEEE Int'l Conf. Machine Learning, pp. 96-103, 2004.
    • (2004) Proc. IEEE Int'l Conf. Machine Learning , pp. 96-103
    • Sminchisescu, C.1    Jepson, A.2
  • 37
    • 84863403200 scopus 로고    scopus 로고
    • http://mocap.cs.cmu.edu/, 2011.
    • (2011)
  • 44
    • 0035365177 scopus 로고    scopus 로고
    • Temporal Kohonen map and the recurrent self-organizing map: Analytical and experimental comparison
    • DOI 10.1023/A:1011353011837
    • M. Varsta, J. Heikkonen, J. Lampinen, and J. Milln, "Temporal Kohonen Map and the Recurrent Self-Organizing Map: Analytical and Experimental Comparison," Neural Processing Letters, vol. 13, no. 3, pp. 237-251, 2001. (Pubitemid 32594387)
    • (2001) Neural Processing Letters , vol.13 , Issue.3 , pp. 237-251
    • Varsta, M.1    Heikkonen, J.2    Lampinen, J.3    Millan, J.D.R.4
  • 45
    • 36348956872 scopus 로고    scopus 로고
    • A spatio-temporal extension to isomap nonlinear dimension reduction
    • O. Jenkins and M. Matarič, "A Spatio-Temporal Extension to Isomap Nonlinear Dimension Reduction," Proc. IEEE Int'l Conf. Machine Learning, pp. 56-63, 2004.
    • (2004) Proc. IEEE Int'l Conf. Machine Learning , pp. 56-63
    • Jenkins, O.1    Matarič, M.2
  • 46
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. Tenenbaum, V. Silva, and J. Langford, "A Global Geometric Framework for Nonlinear Dimensionality Reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 49
    • 84898980901 scopus 로고    scopus 로고
    • Gaussian process latent variable models for visualization of high dimensional data
    • N. Lawrence, "Gaussian Process Latent Variable Models for Visualization of High Dimensional Data," Proc. Advances in Neural Information Processing Systems, vol. 16, pp. 329-336, 2004.
    • (2004) Proc. Advances in Neural Information Processing Systems , vol.16 , pp. 329-336
    • Lawrence, N.1
  • 52
    • 34547977917 scopus 로고    scopus 로고
    • Hierarchical gaussian process latent variable models
    • N. Lawrence and A. Moore, "Hierarchical Gaussian Process Latent Variable Models," Proc. IEEE Int'l Conf. Machine Learning, vol. 227, pp. 481-488, 2007.
    • (2007) Proc. IEEE Int'l Conf. Machine Learning , vol.227 , pp. 481-488
    • Lawrence, N.1    Moore, A.2
  • 53
    • 79955836081 scopus 로고    scopus 로고
    • Two distributed-state models for generating high-dimensional time series
    • G. Taylor, G. Hinton, and S. Roweis, "Two Distributed-State Models for Generating High-Dimensional Time Series," J. Machine Learning Research, vol. 12, pp. 1025-1068, 2011.
    • (2011) J. Machine Learning Research , vol.12 , pp. 1025-1068
    • Taylor, G.1    Hinton, G.2    Roweis, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.