메뉴 건너뛰기




Volumn 33, Issue 1, 1997, Pages 47-63

Classification of two-symbol orthogonal arrays of size 24, strength 2, 6 constraints and index 6 derivable from saturated orthogonal arrays having 23 constraints

Author keywords

Factorial design; Orthogonal array

Indexed keywords


EID: 84863393761     PISSN: 09165746     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (14)
  • 1
    • 84863136881 scopus 로고
    • k-p fractional factorial designs, Part I
    • k-p fractional factorial designs, Part I. Technometrics, 3, (1961a), 311-351.
    • (1961) Technometrics , vol.3 , pp. 311-351
    • Box, G.E.P.1    Hunter, J.S.2
  • 2
    • 0000884133 scopus 로고
    • k-p fractional factorial designs, Part II
    • k-p fractional factorial designs, Part II. Technometrics, 3, (1961b), 449-458.
    • (1961) Technometrics , vol.3 , pp. 449-458
    • Box, G.E.P.1    Hunter, J.S.2
  • 3
    • 0011000088 scopus 로고
    • New properties of orthogonal arrays and their statistical applications
    • S. Ghosh, Marcel Dekker, New York
    • Hedayat, A.S., New properties of orthogonal arrays and their statistical applications. In Statistical design and analysis of industrial experiments (Edited by S. Ghosh), (1990), 407-422. Marcel Dekker, New York.
    • (1990) Statistical Design and Analysis of Industrial Experiments , pp. 407-422
    • Hedayat, A.S.1
  • 5
    • 0011527957 scopus 로고
    • Computational study on the classification of two-symbol orthogonal arrays of strength t, m = t + e constraints for e ≤ 3
    • Namikawa, T., Y. Fujii and S. Yamamoto, Computational study on the classification of two-symbol orthogonal arrays of strength t, m = t + e constraints for e ≤ 3. SUT J. Math., 25, (1989), 179-195.
    • (1989) SUT J. Math , vol.25 , pp. 179-195
    • Namikawa, T.1    Fujii, Y.2    Yamamoto, S.3
  • 6
    • 0002167226 scopus 로고
    • Linear graphs for orthogonal arrays and their application to experimental design, with the aid of various techniques
    • Taguchi, G., Linear graphs for orthogonal arrays and their application to experimental design, with the aid of various techniques. Reports of Statistical Applications Research, UJSU, 6, 4, (1959), 1-43.
    • (1959) Reports of Statistical Applications Research, UJSU , vol.6 , Issue.4 , pp. 1-43
    • Taguchi, G.1
  • 8
    • 0011588727 scopus 로고
    • Classification of two symbol orthogonal arrays of strength 2, size 16, 15 (maximal) constraints and index 4
    • Yamamoto, S., Y. Fujii, Y. Hyodo and H. Yumiba, Classification of two symbol orthogonal arrays of strength 2, size 16, 15 (maximal) constraints and index 4. SUT J. Math., 28, (1992a), 47-59.
    • (1992) SUT J. Math , vol.28 , pp. 47-59
    • Yamamoto, S.1    Fujii, Y.2    Hyodo, Y.3    Yumiba, H.4
  • 9
    • 0011659989 scopus 로고
    • Classification of twosymbol orthogonal arrays of strength 2, size 20, 19 (maximal) constraints
    • Yamamoto, S., Y. Fujii, Y. Hyodo and H. Yumiba, Classification of two symbol orthogonal arrays of strength 2, size 20, 19 (maximal) constraints. SUT J. Math., 28, (1992b), 191-209.
    • (1992) SUT J. Math , vol.28 , pp. 191-209
    • Yamamoto, S.1    Fujii, Y.2    Hyodo, Y.3    Yumiba, H.4
  • 12
    • 84863399118 scopus 로고
    • 6 factorial designs having 16 and 20 runs derivable from saturated orthogonal arrays of strength two
    • 6 factorial designs having 16 and 20 runs derivable from saturated orthogonal arrays of strength two. SUT J. Math., 30, (1994a), 35-50.
    • (1994) SUT J. Math , vol.30 , pp. 35-50
    • Yamamoto, S.1    Fujii, Y.2    Hyodo, Y.3    Yumiba, H.4
  • 13
    • 84863400077 scopus 로고
    • Saturated two-symbol orthogonal arrays of strength two and Hadamard three designs
    • Yamamoto, S., Y. Fujii, Y. Hyodo and H. Yumiba, Saturated two-symbol orthogonal arrays of strength two and Hadamard three designs. SUT J.Math., 30, (1994b), 51-64.
    • (1994) SUT J.Math , vol.30 , pp. 51-64
    • Yamamoto, S.1    Fujii, Y.2    Hyodo, Y.3    Yumiba, H.4
  • 14
    • 84863399129 scopus 로고
    • 5 factorial designs derivable from saturated two-symbol orthogonal arrays of strength 2, size 24 and index 6
    • 5 factorial designs derivable from saturated two-symbol orthogonal arrays of strength 2, size 24 and index 6. SUT J. Math., 31, (1995), 39-53.
    • (1995) SUT J. Math , vol.31 , pp. 39-53
    • Yamamoto, S.1    Fujii, Y.2    Hyodo, Y.3    Yumiba, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.