메뉴 건너뛰기




Volumn , Issue , 2009, Pages 2008-2016

A rate distortion approach for semi-supervised conditional random fields

Author keywords

[No Author keywords available]

Indexed keywords

ELECTRIC DISTORTION; INFORMATION THEORY; LEARNING ALGORITHMS; RANDOM PROCESSES; SIGNAL DISTORTION; SUPERVISED LEARNING;

EID: 84863351869     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (12)

References (32)
  • 2
    • 33749256006 scopus 로고    scopus 로고
    • Maximum margin semi-supervised learning for structured variables
    • Y. Altun, D. McAllester and M. Belkin. Maximum margin semi-supervised learning for structured variables. NIPS 18:33-40, 2005.
    • (2005) NIPS , vol.18 , pp. 33-40
    • Altun, Y.1    McAllester, D.2    Belkin, M.3
  • 3
    • 0015287895 scopus 로고
    • An algorithm for computing the capacity of arbitrary discrete memoryless channels
    • S. Arimoto. An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Transactions on Information Theory, 18:1814-1820, 1972.
    • (1972) IEEE Transactions on Information Theory , vol.18 , pp. 1814-1820
    • Arimoto, S.1
  • 4
    • 0022890536 scopus 로고
    • Maximum mutual information estimation of hidden Markov model parameters for speech recognition
    • L. Bahl, P. Brown, P. de Souza and R. Mercer. Maximum mutual information estimation of hidden Markov model parameters for speech recognition. ICASSP, 11:49-52, 1986.
    • (1986) ICASSP , vol.11 , pp. 49-52
    • Bahl, L.1    Brown, P.2    De Souza, P.3    Mercer, R.4
  • 6
    • 0015376113 scopus 로고
    • Computation of channel capacity and rate-distortion functions
    • R. Blahut. Computation of channel capacity and rate-distortion functions. IEEE Transactions on Information Theory, 18:460-473, 1972.
    • (1972) IEEE Transactions on Information Theory , vol.18 , pp. 460-473
    • Blahut, R.1
  • 9
    • 33749237544 scopus 로고    scopus 로고
    • Semi-supervised learning for structured output variables
    • U. Brefeld and T. Scheffer. Semi-supervised learning for structured output variables. ICML, 145-152, 2006.
    • (2006) ICML , pp. 145-152
    • Brefeld, U.1    Scheffer, T.2
  • 11
    • 33750688582 scopus 로고    scopus 로고
    • On information regularization
    • A. Corduneanu and T. Jaakkola. On information regularization. UAI, 151-158, 2003.
    • (2003) UAI , pp. 151-158
    • Corduneanu, A.1    Jaakkola, T.2
  • 12
    • 84863352980 scopus 로고    scopus 로고
    • Distributed information regularization on graphs
    • A. Corduneanu and T. Jaakkola. Distributed information regularization on graphs. NIPS, 17:297-304, 2004.
    • (2004) NIPS , vol.17 , pp. 297-304
    • Corduneanu, A.1    Jaakkola, T.2
  • 13
    • 70049107351 scopus 로고    scopus 로고
    • Data dependent regularization
    • O. Chapelle, B. Scholköpf and A. Zien, (Editors) MIT Press
    • A. Corduneanu and T. Jaakkola. Data dependent regularization. In Semi-Supervised Learning, O. Chapelle, B. Scholköpf and A. Zien, (Editors), 163-182, MIT Press, 2006.
    • (2006) Semi-supervised Learning , pp. 163-182
    • Corduneanu, A.1    Jaakkola, T.2
  • 15
    • 29344448013 scopus 로고    scopus 로고
    • Semi-supervised learning by entropy minimization
    • Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. NIPS, 17:529-536, 2004.
    • (2004) NIPS , vol.17 , pp. 529-536
    • Grandvalet, Y.1    Bengio, Y.2
  • 16
    • 84860537772 scopus 로고    scopus 로고
    • Semi-supervised conditional random fields for improved sequence segmentation and labeling
    • F. Jiao, S. Wang, C. Lee, R. Greiner and D. Schuurmans. Semi-supervised conditional random fields for improved sequence segmentation and labeling. COLING/ACL, 209-216, 2006.
    • (2006) COLING/ACL , pp. 209-216
    • Jiao, F.1    Wang, S.2    Lee, C.3    Greiner, R.4    Schuurmans, D.5
  • 17
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • M. Jordan, Z. Ghahramani, T. Jaakkola and L. Saul. Introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999.
    • (1999) Machine Learning , vol.37 , pp. 183-233
    • Jordan, M.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.4
  • 19
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML, 282-289, 2001.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 20
    • 85157973211 scopus 로고    scopus 로고
    • Learning to model spatial dependency: Semi-supervised discriminative random fields
    • C. Lee, S. Wang, F. Jiao, D. Schuurmans and R. Greiner. Learning to model spatial dependency: Semi-supervised discriminative random fields. NIPS, 19:793-800, 2006.
    • (2006) NIPS , vol.19 , pp. 793-800
    • Lee, C.1    Wang, S.2    Jiao, F.3    Schuurmans, D.4    Greiner, R.5
  • 21
    • 85119688696 scopus 로고    scopus 로고
    • Efficient computation of entropy gradient for semi-supervised conditional random fields
    • G. Mann and A. McCallum. Efficient computation of entropy gradient for semi-supervised conditional random fields. NAACL/HLT, 109-112, 2007.
    • (2007) NAACL/HLT , pp. 109-112
    • Mann, G.1    McCallum, A.2
  • 22
    • 84859912771 scopus 로고    scopus 로고
    • Generalized expectation criteria for semi-supervised learning of conditional random fields
    • G. Mann and A. McCallum. Generalized expectation criteria for semi-supervised learning of conditional random fields. ACL, 870-878, 2008.
    • (2008) ACL , pp. 870-878
    • Mann, G.1    McCallum, A.2
  • 23
    • 0002756136 scopus 로고    scopus 로고
    • Maximum mutual information estimation of hidden Markov models
    • C. Lee, F. Soong and K. Paliwal (Editors) Springer
    • Y. Normandin. Maximum mutual information estimation of hidden Markov models. In Automatic Speech and Speaker Recognition: Advanced Topics, C. Lee, F. Soong and K. Paliwal (Editors), 57-81, Springer, 1996.
    • (1996) Automatic Speech and Speaker Recognition: Advanced Topics , pp. 57-81
    • Normandin, Y.1
  • 24
    • 84863382181 scopus 로고    scopus 로고
    • MMIHMM: Maximum mutual information hidden Markov models
    • N. Oliver and A. Garg. MMIHMM: maximum mutual information hidden Markov models. ICML, 466-473, 2002.
    • (2002) ICML , pp. 466-473
    • Oliver, N.1    Garg, A.2
  • 25
    • 0032202775 scopus 로고    scopus 로고
    • Deterministic annealing for clustering, compression, classification, regression, and related optimization problems
    • K. Rose. Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE, 80:2210-2239, 1998.
    • (1998) Proceedings of the IEEE , vol.80 , pp. 2210-2239
    • Rose, K.1
  • 27
    • 10044254422 scopus 로고    scopus 로고
    • How many clusters? An information theoretic perspective
    • S. Still and W. Bialek. How many clusters? An information theoretic perspective. Neural Computation, 16:2483-2506, 2004.
    • (2004) Neural Computation , vol.16 , pp. 2483-2506
    • Still, S.1    Bialek, W.2
  • 28
    • 85156203044 scopus 로고    scopus 로고
    • Information regularization with partially labeled data
    • M. Szummer and T. Jaakkola. Information regularization with partially labeled data. NIPS, 1025-1032, 2002.
    • (2002) NIPS , pp. 1025-1032
    • Szummer, M.1    Jaakkola, T.2
  • 29
    • 14344253870 scopus 로고    scopus 로고
    • Max-margin Markov networks
    • B. Taskar, C. Guestrain and D. Koller. Max-margin Markov networks. NIPS, 16:25-32, 2003.
    • (2003) NIPS , vol.16 , pp. 25-32
    • Taskar, B.1    Guestrain, C.2    Koller, D.3
  • 31
    • 71049137802 scopus 로고    scopus 로고
    • Information theoretic regularization for semi-supervised boosting
    • L. Zheng, S. Wang, Y. Liu and C. Lee. Information theoretic regularization for semi-supervised boosting. KDD, 1017-1026, 2009.
    • (2009) KDD , pp. 1017-1026
    • Zheng, L.1    Wang, S.2    Liu, Y.3    Lee, C.4
  • 32
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • University of Wisconsin Madison
    • X. Zhu. Semi-supervised learning literature survey. Computer Sciences TR 1530, University of Wisconsin Madison, 2007.
    • (2007) Computer Sciences TR , vol.1530
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.