-
2
-
-
33749256006
-
Maximum margin semi-supervised learning for structured variables
-
Y. Altun, D. McAllester and M. Belkin. Maximum margin semi-supervised learning for structured variables. NIPS 18:33-40, 2005.
-
(2005)
NIPS
, vol.18
, pp. 33-40
-
-
Altun, Y.1
McAllester, D.2
Belkin, M.3
-
3
-
-
0015287895
-
An algorithm for computing the capacity of arbitrary discrete memoryless channels
-
S. Arimoto. An algorithm for computing the capacity of arbitrary discrete memoryless channels. IEEE Transactions on Information Theory, 18:1814-1820, 1972.
-
(1972)
IEEE Transactions on Information Theory
, vol.18
, pp. 1814-1820
-
-
Arimoto, S.1
-
4
-
-
0022890536
-
Maximum mutual information estimation of hidden Markov model parameters for speech recognition
-
L. Bahl, P. Brown, P. de Souza and R. Mercer. Maximum mutual information estimation of hidden Markov model parameters for speech recognition. ICASSP, 11:49-52, 1986.
-
(1986)
ICASSP
, vol.11
, pp. 49-52
-
-
Bahl, L.1
Brown, P.2
De Souza, P.3
Mercer, R.4
-
6
-
-
0015376113
-
Computation of channel capacity and rate-distortion functions
-
R. Blahut. Computation of channel capacity and rate-distortion functions. IEEE Transactions on Information Theory, 18:460-473, 1972.
-
(1972)
IEEE Transactions on Information Theory
, vol.18
, pp. 460-473
-
-
Blahut, R.1
-
9
-
-
33749237544
-
Semi-supervised learning for structured output variables
-
U. Brefeld and T. Scheffer. Semi-supervised learning for structured output variables. ICML, 145-152, 2006.
-
(2006)
ICML
, pp. 145-152
-
-
Brefeld, U.1
Scheffer, T.2
-
11
-
-
33750688582
-
On information regularization
-
A. Corduneanu and T. Jaakkola. On information regularization. UAI, 151-158, 2003.
-
(2003)
UAI
, pp. 151-158
-
-
Corduneanu, A.1
Jaakkola, T.2
-
12
-
-
84863352980
-
Distributed information regularization on graphs
-
A. Corduneanu and T. Jaakkola. Distributed information regularization on graphs. NIPS, 17:297-304, 2004.
-
(2004)
NIPS
, vol.17
, pp. 297-304
-
-
Corduneanu, A.1
Jaakkola, T.2
-
13
-
-
70049107351
-
Data dependent regularization
-
O. Chapelle, B. Scholköpf and A. Zien, (Editors) MIT Press
-
A. Corduneanu and T. Jaakkola. Data dependent regularization. In Semi-Supervised Learning, O. Chapelle, B. Scholköpf and A. Zien, (Editors), 163-182, MIT Press, 2006.
-
(2006)
Semi-supervised Learning
, pp. 163-182
-
-
Corduneanu, A.1
Jaakkola, T.2
-
15
-
-
29344448013
-
Semi-supervised learning by entropy minimization
-
Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. NIPS, 17:529-536, 2004.
-
(2004)
NIPS
, vol.17
, pp. 529-536
-
-
Grandvalet, Y.1
Bengio, Y.2
-
16
-
-
84860537772
-
Semi-supervised conditional random fields for improved sequence segmentation and labeling
-
F. Jiao, S. Wang, C. Lee, R. Greiner and D. Schuurmans. Semi-supervised conditional random fields for improved sequence segmentation and labeling. COLING/ACL, 209-216, 2006.
-
(2006)
COLING/ACL
, pp. 209-216
-
-
Jiao, F.1
Wang, S.2
Lee, C.3
Greiner, R.4
Schuurmans, D.5
-
17
-
-
0033225865
-
Introduction to variational methods for graphical models
-
M. Jordan, Z. Ghahramani, T. Jaakkola and L. Saul. Introduction to variational methods for graphical models. Machine Learning, 37:183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, pp. 183-233
-
-
Jordan, M.1
Ghahramani, Z.2
Jaakkola, T.3
Saul, L.4
-
19
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. McCallum and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML, 282-289, 2001.
-
(2001)
ICML
, pp. 282-289
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
20
-
-
85157973211
-
Learning to model spatial dependency: Semi-supervised discriminative random fields
-
C. Lee, S. Wang, F. Jiao, D. Schuurmans and R. Greiner. Learning to model spatial dependency: Semi-supervised discriminative random fields. NIPS, 19:793-800, 2006.
-
(2006)
NIPS
, vol.19
, pp. 793-800
-
-
Lee, C.1
Wang, S.2
Jiao, F.3
Schuurmans, D.4
Greiner, R.5
-
21
-
-
85119688696
-
Efficient computation of entropy gradient for semi-supervised conditional random fields
-
G. Mann and A. McCallum. Efficient computation of entropy gradient for semi-supervised conditional random fields. NAACL/HLT, 109-112, 2007.
-
(2007)
NAACL/HLT
, pp. 109-112
-
-
Mann, G.1
McCallum, A.2
-
22
-
-
84859912771
-
Generalized expectation criteria for semi-supervised learning of conditional random fields
-
G. Mann and A. McCallum. Generalized expectation criteria for semi-supervised learning of conditional random fields. ACL, 870-878, 2008.
-
(2008)
ACL
, pp. 870-878
-
-
Mann, G.1
McCallum, A.2
-
23
-
-
0002756136
-
Maximum mutual information estimation of hidden Markov models
-
C. Lee, F. Soong and K. Paliwal (Editors) Springer
-
Y. Normandin. Maximum mutual information estimation of hidden Markov models. In Automatic Speech and Speaker Recognition: Advanced Topics, C. Lee, F. Soong and K. Paliwal (Editors), 57-81, Springer, 1996.
-
(1996)
Automatic Speech and Speaker Recognition: Advanced Topics
, pp. 57-81
-
-
Normandin, Y.1
-
24
-
-
84863382181
-
MMIHMM: Maximum mutual information hidden Markov models
-
N. Oliver and A. Garg. MMIHMM: maximum mutual information hidden Markov models. ICML, 466-473, 2002.
-
(2002)
ICML
, pp. 466-473
-
-
Oliver, N.1
Garg, A.2
-
25
-
-
0032202775
-
Deterministic annealing for clustering, compression, classification, regression, and related optimization problems
-
K. Rose. Deterministic annealing for clustering, compression, classification, regression, and related optimization problems. Proceedings of the IEEE, 80:2210-2239, 1998.
-
(1998)
Proceedings of the IEEE
, vol.80
, pp. 2210-2239
-
-
Rose, K.1
-
26
-
-
29444444918
-
Information based clustering
-
N. Slonim, G. Atwal, G. Tkacik and W. Bialek. Information based clustering. Proceedings of National Academy of Science (PNAS), 102:18297-18302, 2005.
-
(2005)
Proceedings of National Academy of Science (PNAS)
, vol.102
, pp. 18297-18302
-
-
Slonim, N.1
Atwal, G.2
Tkacik, G.3
Bialek, W.4
-
27
-
-
10044254422
-
How many clusters? An information theoretic perspective
-
S. Still and W. Bialek. How many clusters? An information theoretic perspective. Neural Computation, 16:2483-2506, 2004.
-
(2004)
Neural Computation
, vol.16
, pp. 2483-2506
-
-
Still, S.1
Bialek, W.2
-
28
-
-
85156203044
-
Information regularization with partially labeled data
-
M. Szummer and T. Jaakkola. Information regularization with partially labeled data. NIPS, 1025-1032, 2002.
-
(2002)
NIPS
, pp. 1025-1032
-
-
Szummer, M.1
Jaakkola, T.2
-
30
-
-
0001808038
-
The information bottleneck method
-
N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. The 37th Annual Allerton Conference on Communication, Control, and Computing, 368-377, 1999.
-
(1999)
The 37th Annual Allerton Conference on Communication, Control, and Computing
, pp. 368-377
-
-
Tishby, N.1
Pereira, F.2
Bialek, W.3
-
31
-
-
71049137802
-
Information theoretic regularization for semi-supervised boosting
-
L. Zheng, S. Wang, Y. Liu and C. Lee. Information theoretic regularization for semi-supervised boosting. KDD, 1017-1026, 2009.
-
(2009)
KDD
, pp. 1017-1026
-
-
Zheng, L.1
Wang, S.2
Liu, Y.3
Lee, C.4
-
32
-
-
33745456231
-
Semi-supervised learning literature survey
-
University of Wisconsin Madison
-
X. Zhu. Semi-supervised learning literature survey. Computer Sciences TR 1530, University of Wisconsin Madison, 2007.
-
(2007)
Computer Sciences TR
, vol.1530
-
-
Zhu, X.1
|