메뉴 건너뛰기




Volumn 30, Issue 1, 2012, Pages 34-46

An effective initialization for orthogonal nonnegative matrix factorization

Author keywords

Lanczos bidiagonalization; Low rank approximation; Nonnegative approximation; Orthogonal nonnegative matrix factorization

Indexed keywords


EID: 84863289867     PISSN: 02549409     EISSN: None     Source Type: Journal    
DOI: 10.4208/jcm.1110-m11si10     Document Type: Article
Times cited : (7)

References (21)
  • 2
    • 36749071484 scopus 로고    scopus 로고
    • SVD based initialization: A head start of nonnegative matrix factorization
    • C. Boutsidis, E. Gallopoulos, SVD based initialization: A head start of nonnegative matrix factorization, Pattern Recogn., 41 (2008), 1350-1362.
    • (2008) Pattern Recogn. , vol.41 , pp. 1350-1362
    • Boutsidis, C.1    Gallopoulos, E.2
  • 4
    • 84863235911 scopus 로고    scopus 로고
    • NMFLAB MATLAB toolbox for vsugunar@yahoo.co.in nonnegative matrix factorization
    • A. Cichocki, R. Zdunek, NMFLAB MATLAB toolbox for vsugunar@yahoo.co.in nonnegative matrix factorization. URL: http://www.bsp.brain.riken.jp/ICALAB/nmflab.html/.
    • Cichocki, A.1    Zdunek, R.2
  • 6
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factoriation and spectral clustering
    • C. Ding, X. He, H.D. Simon, On the equivalence of nonnegative matrix factoriation and spectral clustering, In: SIAM Data Mining Conf, 2005.
    • (2005) SIAM Data Mining Conf
    • Ding, C.1    He, X.2    Simon, H.D.3
  • 8
    • 9244259543 scopus 로고
    • Nonnegative ranks, decomposition, and factorizations of nonnegative matrices
    • J. Cohen, U. Rothblum, Nonnegative ranks, decomposition, and factorizations of nonnegative matrices, Linear Algerbra Appl., 190 (1993), 149-168.
    • (1993) Linear Algerbra Appl. , vol.190 , pp. 149-168
    • Cohen, J.1    Rothblum, U.2
  • 9
    • 0019576431 scopus 로고
    • A Lanczos algorithm for computing the singular values and corrsponding singular vectors of a matrix
    • J. Cullum, R.A. Willoughby, and M. Lake, A Lanczos algorithm for computing the singular values and corrsponding singular vectors of a matrix, ACM T. Math. Software, 7 (1981), 140-169.
    • (1981) ACM T. Math. Software , vol.7 , pp. 140-169
    • Cullum, J.1    Willoughby, R.A.2    Lake, M.3
  • 11
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed., The Johns Hopkins University Press, Baltimore, MD
    • G.H. Gloub and C.F. Van Loan, Matrix Computation, 3rd ed., The Johns Hopkins University Press, Baltimore, MD. 1996.
    • (1996) Matrix Computation
    • Gloub, G.H.1    Van Loan, C.F.2
  • 12
    • 0001930482 scopus 로고
    • Matrix nearest problems and applications
    • M. Gover, S. Barnett (Eds.) Oxford University Press
    • N.J. Higham, Matrix nearest problems and applications, in: M. Gover, S. Barnett (Eds.), Applications of Matrix Theory, Oxford University Press, 1989, pp. 1-27.
    • (1989) Applications of Matrix Theory , pp. 1-27
    • Higham, N.J.1
  • 13
    • 84899021859 scopus 로고    scopus 로고
    • Unsupervised learning by convex and coinc coding
    • D.D. Lee, H.S. Seung, Unsupervised learning by convex and coinc coding, Adv. Neural Inf. Process. Syst, 9 (1997) 515-521.
    • (1997) Adv. Neural Inf. Process. Syst , vol.9 , pp. 515-521
    • Lee, D.D.1    Seung, H.S.2
  • 15
    • 74449083451 scopus 로고    scopus 로고
    • Francois glineur using underapproximations for sparse nonnegative matrix factorization
    • Nicolas Gillis, Francois Glineur Using Underapproximations for Sparse Nonnegative Matrix Factorization, Pattern Recogn., (2010), 1676-1687.
    • (2010) Pattern Recogn. , pp. 1676-1687
    • Gillis, N.1
  • 16
    • 0030954231 scopus 로고    scopus 로고
    • Least squares formulation of robust non-negative factor analysis
    • P. Paatero, Least squares formulation of robust non-negative factor analysis, Chemometr. Intell. lab., 37 (1997), 23-35.
    • (1997) Chemometr. Intell. Lab. , vol.37 , pp. 23-35
    • Paatero, P.1
  • 17
    • 0028561099 scopus 로고
    • Positive matrix factorization: a non-negative factor model with optimal utilization of error estiamtes of data values
    • P. Paatero, U. Tapper, Positive matrix factorization: a non-negative factor model with optimal utilization of error estiamtes of data values, Environmetrics, 5 (1994), 111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 18
    • 53849148874 scopus 로고
    • Errors analysis of the Lanczos algorithm for tridiagonalizaing a symmetric matrix
    • C.C. Paige, Errors analysis of the Lanczos algorithm for tridiagonalizaing a symmetric matrix, J. Inst. Math. Appl., 18 (1976), 341-349.
    • (1976) J. Inst. Math. Appl. , vol.18 , pp. 341-349
    • Paige, C.C.1
  • 20
    • 0034510473 scopus 로고    scopus 로고
    • Low-rank matrix approximation using Lanczos bidiagonalization process with applications
    • H.D. Simon and H. Zha, Low-rank Matrix Approximation Using Lanczos Bidiagonalization Process with Applications, SIAM J. Sci. Comput, 21:6 (2000), 2257-2274.
    • (2000) SIAM J. Sci. Comput. , vol.21 , Issue.6 , pp. 2257-2274
    • Simon, H.D.1    Zha, H.2
  • 21
    • 77955430417 scopus 로고    scopus 로고
    • Orthogonal nonnegative matrix tri-factorization for co-clustering: Multiplicative updates on Stiefel manifolds
    • Jiho Yoo, and Seungjin Choi, Orthogonal nonnegative matrix tri-factorization for co-clustering: Multiplicative updates on Stiefel manifolds, Inform. Process. Manag., 46 (2010), 559-570.
    • (2010) Inform. Process. Manag. , vol.46 , pp. 559-570
    • Yoo, J.1    Choi, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.