메뉴 건너뛰기




Volumn 39, Issue 1, 2012, Pages 151-160

Bias-corrected random forests in regression

Author keywords

bias correction; mean squared prediction error; random forests; regression; simulation

Indexed keywords


EID: 84863230810     PISSN: 02664763     EISSN: 13600532     Source Type: Journal    
DOI: 10.1080/02664763.2011.578621     Document Type: Article
Times cited : (154)

References (12)
  • 1
    • 77956747417 scopus 로고    scopus 로고
    • On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification
    • Biau, G. and Devroye, L. 2010. On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification. J. Multivariate Anal., 101: 2499-2518.
    • (2010) J. Multivariate Anal , vol.101 , pp. 2499-2518
    • Biau, G.1    Devroye, L.2
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Mach. Learn., 24: 123-140.
    • (1996) Mach. Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers, discussion paper
    • Breiman, L. 1998. Arcing classifiers, discussion paper. Ann. Statist., 26: 801-824.
    • (1998) Ann. Statist , vol.26 , pp. 801-824
    • Breiman, L.1
  • 4
    • 0003856278 scopus 로고    scopus 로고
    • Using adaptive bagging to debias regressions
    • University of California at Berkeley February
    • Breiman, L. 1999. Using adaptive bagging to debias regressions. Tech. Rep. 547, University of California at Berkeley. Tech. Rep. 547 February
    • (1999) Tech. Rep. , vol.547
    • Breiman, L.1
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. 2001. Random forests. Mach. Learn., 45: 5-32.
    • (2001) Mach. Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 7
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman, J. 1991. Multivariate adaptive regression splines. Ann. Statist., 19: 1-67.
    • (1991) Ann. Statist , vol.19 , pp. 1-67
    • Friedman, J.1
  • 8
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman, S., Bienenstock, E. and Doursat, R. 1992. Neural networks and the bias/variance dilemma. Neural Comput., 4: 1-58.
    • (1992) Neural Comput , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 9
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • Liaw, A. and Wiener, M. 2006. Classification and regression by randomforest. R News, 2: 18-22.
    • (2006) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 10
    • 33745653724 scopus 로고    scopus 로고
    • Random forests and adaptive nearest neighbors
    • Lin, Y. and Jeon, Y. 2006. Random forests and adaptive nearest neighbors. J. Amer. Statist. Assoc., 101: 578-590.
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 578-590
    • Lin, Y.1    Jeon, Y.2
  • 12
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • Strobl, C., Boulesteix, A. L., Zeileis, A. and Hothorn, T. 2007. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinform., 8: 25
    • (2007) BMC Bioinform , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.L.2    Zeileis, A.3    Hothorn, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.