메뉴 건너뛰기




Volumn , Issue , 2011, Pages 844-853

Direct robust matrix factorization for anomaly detection

Author keywords

Anomaly detection; Matrix factorization; Robust

Indexed keywords

ANOMALY DETECTION; CARDINALITIES; CONVEX RELAXATION; DATA MINING TASKS; DATA SETS; DIRECT SOLUTION; EMPIRICAL RESULTS; MATRIX; MATRIX APPROXIMATION; MATRIX FACTORIZATIONS; ROBUST; ROBUST MODELING; STATE-OF-THE-ART METHODS; STRUCTURAL KNOWLEDGE;

EID: 84863134807     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2011.52     Document Type: Conference Paper
Times cited : (106)

References (32)
  • 4
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near-optimal matrix completion
    • E. J. Candès and T. Tao, "The power of convex relaxation: Near-optimal matrix completion," IEEE Trans. Information Theory, vol. 56(5), pp. 2053-2080, 2009.
    • (2009) IEEE Trans. Information Theory , vol.56 , Issue.5 , pp. 2053-2080
    • Candès, E.J.1    Tao, T.2
  • 6
    • 84871617105 scopus 로고    scopus 로고
    • Convex and seminonnegative matrix factorizations
    • C. Ding, T. Li, and M. I. Jordan, "Convex and seminonnegative matrix factorizations," IEEE T-PAMI, vol. 32(1), pp. 45-55, 2010.
    • (2010) IEEE T-PAMI , vol.32 , Issue.1 , pp. 45-55
    • Ding, C.1    Li, T.2    Jordan, M.I.3
  • 8
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • C. Eckart and G. Young, "The approximation of one matrix by another of lower rank," Psychometrika, vol. 1, pp. 211- 218, 1936.
    • (1936) Psychometrika , vol.1 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 11
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • Huber and P. J., "Robust estimation of a location parameter," Annals of Statistics, vol. 53, pp. 73-101, 1964.
    • (1964) Annals of Statistics , vol.53 , pp. 73-101
    • Huber, P.J.1
  • 12
    • 33745179218 scopus 로고    scopus 로고
    • Robust l1 norm factorization in the presence of outliers and missing data by alternative convex programming
    • Q. Ke and T. Kanade, "Robust l1 norm factorization in the presence of outliers and missing data by alternative convex programming," in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2005.
    • (2005) IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
    • Ke, Q.1    Kanade, T.2
  • 16
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, pp. 788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 17
    • 0001337027 scopus 로고
    • Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and monte carlo
    • G. Li and Z. Chen, "Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and monte carlo," J. of American Statistical Association, vol. 80, no. 391, pp. 759 - 766, 1985.
    • (1985) J. of American Statistical Association , vol.80 , Issue.391 , pp. 759-766
    • Li, G.1    Chen, Z.2
  • 18
    • 7444243389 scopus 로고    scopus 로고
    • Statistical modeling of complex backgrounds
    • L. Li, W. Huang, I. Y.-H. Gu, and Q. Tian, "Statistical modeling of complex backgrounds," IEEE Trans. Image Processing, vol. 13, no. 11, pp. 1459-1472, 2004.
    • (2004) IEEE Trans. Image Processing , vol.13 , Issue.11 , pp. 1459-1472
    • Li, L.1    Huang, W.2    Gu, I.Y.-H.3    Tian, Q.4
  • 21
    • 72549092023 scopus 로고    scopus 로고
    • Fixed point and bregman iterative methods for matrix rank minimization
    • to appear
    • S. Ma, D. Goldfarb, and L. Chen, "Fixed point and bregman iterative methods for matrix rank minimization," Math. Program., Ser. A, to appear.
    • Math. Program., Ser. A
    • Ma, S.1    Goldfarb, D.2    Chen, L.3
  • 23
    • 77955849133 scopus 로고    scopus 로고
    • Robust kernel principal components analysis
    • M. H. Nguyen and F. D. la Torre, "Robust kernel principal components analysis," in NIPS, 2009.
    • (2009) NIPS
    • Nguyen, M.H.1    La Torre, F.D.2
  • 24
    • 70350672596 scopus 로고    scopus 로고
    • A fast and efficient algorithm for low-rank approximation of a matrix
    • N. H. Nguyen, T. T. Do, and T. D. Tran, "A fast and efficient algorithm for low-rank approximation of a matrix," in STOC, 2009.
    • (2009) STOC
    • Nguyen, N.H.1    Do, T.T.2    Tran, T.D.3
  • 25
    • 31844451557 scopus 로고    scopus 로고
    • Fast maximum margin matrix factorization for collaborative prediction
    • J. D. M. Rennie and N. Srebro, "Fast maximum margin matrix factorization for collaborative prediction," in ICML, 2005.
    • (2005) ICML
    • Rennie, J.D.M.1    Srebro, N.2
  • 26
    • 48349135120 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Minh, "Probabilistic matrix factorization," in NIPS, 2007.
    • (2007) NIPS
    • Salakhutdinov, R.1    Minh, A.2
  • 29
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin, "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society, Series B, vol. 68, pp. 49-67, 2006.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 30
    • 84856114036 scopus 로고    scopus 로고
    • Anomaly detection with score functions based on nearest neighbor graphs
    • M. Zhao and V. Saligrama, "Anomaly detection with score functions based on nearest neighbor graphs," in NIPS, 2009.
    • (2009) NIPS
    • Zhao, M.1    Saligrama, V.2
  • 31
    • 80053437358 scopus 로고    scopus 로고
    • Godec: Randomized low-rank & sparse matrix decomposition in noisy case
    • T. Zhou and D. Tao, "Godec: Randomized low-rank & sparse matrix decomposition in noisy case," in International Conference on Machine Learning, 2011.
    • (2011) International Conference on Machine Learning
    • Zhou, T.1    Tao, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.