메뉴 건너뛰기




Volumn 21, Issue 6, 2011, Pages 551-574

Sparse kernel maximum margin clustering

Author keywords

Large scale data set; Maximum margin clustering (MMC); Nonlinear kernel

Indexed keywords

COMPUTATIONAL COMPLEXITY; DIGITAL STORAGE; INTEGER PROGRAMMING; SUPPORT VECTOR MACHINES; VIRTUAL REALITY;

EID: 84863017096     PISSN: 12100552     EISSN: None     Source Type: Journal    
DOI: 10.14311/NNW.2011.21.033     Document Type: Article
Times cited : (2)

References (27)
  • 2
    • 56449101964 scopus 로고    scopus 로고
    • Optimized cutting plane algorithm for support vector machines
    • Franc V., Sonnenburg S.: Optimized cutting plane algorithm for support vector machines. In: Proc. 25th Int. Conf. Mach. Learn., 2008, pp. 320-327.
    • (2008) Proc. 25th Int. Conf. Mach. Learn. , pp. 320-327
    • Franc, V.1    Sonnenburg, S.2
  • 5
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • Hartigan J. A., Wong M. A.: A k-means clustering algorithm. Appl. Statist., 28, 1979, pp. 100-108.
    • (1979) Appl. Statist. , vol.28 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 6
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • Joachims T., Finley T., Yu C. N. J.: Cutting-plane training of structural SVMs. Mach. Learn., 77, 1, 2009, pp. 27-59.
    • (2009) Mach. Learn. , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.N.J.3
  • 7
    • 68949154453 scopus 로고    scopus 로고
    • Sparse kernel SVMs via cutting-plane training
    • Joachims T., Yu C. N. J.: Sparse kernel SVMs via cutting-plane training. Mach. Learn., 76, 2, 2009, pp. 179-193.
    • (2009) Mach. Learn. , vol.76 , Issue.2 , pp. 179-193
    • Joachims, T.1    Yu, C.N.J.2
  • 8
    • 4243128193 scopus 로고    scopus 로고
    • On clusterings: Good, bad and spectral
    • Kaunan R., Vernpala S., Vetta A.: On clusterings: Good, bad and spectral. J. ACM, 51, 3, 2004, pp. 497-515.
    • (2004) J. ACM , vol.51 , Issue.3 , pp. 497-515
    • Kaunan, R.1    Vernpala, S.2    Vetta, A.3
  • 9
    • 0001547779 scopus 로고
    • The cutting-plane method for solving convex programs
    • Klley J. E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math., 8, 4, 1960, pp. 703-712.
    • (1960) J. Soc. Ind. Appl. Math. , vol.8 , Issue.4 , pp. 703-712
    • Klley, J.E.1
  • 11
    • 0001457509 scopus 로고    scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • MacQueen J., et al.: Some methods for classification and analysis of multivariate observations. In: Proc. 5th Berkeley Sym. Math. Statist. Prob., 1, pp. 281-297.
    • Proc. 5th Berkeley Sym. Math. Statist. Prob. , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 19
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVM training on very large data sets
    • Tsang I., Kwok J., Cheung P.: Core vector machines: Fast SVM training on very large data sets. J. Mach. Learn. Res., 6, 1, 2006, pp. 363-392.
    • (2006) J. Mach. Learn. Res. , vol.6 , Issue.1 , pp. 363-392
    • Tsang, I.1    Kwok, J.2    Cheung, P.3
  • 20
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Tsochantaiidis I., Joachims T., Hofmann T., Altuu Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res., 6, 2, 2006, pp. 1453-1484.
    • (2006) J. Mach. Learn. Res. , vol.6 , Issue.2 , pp. 1453-1484
    • Tsochantaiidis, I.1    Joachims, T.2    Hofmann, T.3    Altuu, Y.4
  • 22
  • 25
    • 0037686659 scopus 로고    scopus 로고
    • The concave-convex procedure
    • DOI 10.1162/08997660360581958
    • Yuille A. L., Rangarajan A.: The concave-convex procedure. Neural Comput., 15, 4, 2003, pp. 915-936. (Pubitemid 37049812)
    • (2003) Neural Computation , vol.15 , Issue.4 , pp. 915-936
    • Yuille, A.L.1    Rangarajan, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.