메뉴 건너뛰기




Volumn 329, Issue , 2012, Pages 32-41

An artificial neural network approach to predict asphaltene deposition test result

Author keywords

Artificial neural network; Asphaltene deposition; Training data; Validation data

Indexed keywords

ARTIFICIAL NEURAL NETWORK APPROACH; ASPHALTENE DEPOSITION; COST SAVING; EXPERIMENTAL STUDIES; FLOW ASSURANCE; INNOVATIVE METHOD; LIVE OIL; PERMEABILITY REDUCTION; PIPELINE PLUGGING; PRODUCTION RATES; SOLUTION ALGORITHMS; TRAINING DATA; UNKNOWN VALUES; VALIDATION DATA; WETTABILITY REVERSAL;

EID: 84862998704     PISSN: 03783812     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fluid.2012.06.001     Document Type: Article
Times cited : (21)

References (16)
  • 7
    • 84864015917 scopus 로고    scopus 로고
    • Structure and properties of micelles and micelle coacervates of asphaltene macromolecule
    • Prepared for Presented at A.I.Ch.E. Annual Meeting, Chicago, USA
    • S. Priyanto, G.A. Mansoori, A. Suwono, Structure and properties of micelles and micelle coacervates of asphaltene macromolecule. Prepared for Presented at A.I.Ch.E. Annual Meeting, Chicago, USA, 2001.
    • (2001)
    • Priyanto, S.1    Mansoori, G.A.2    Suwono, A.3
  • 8
    • 0031076324 scopus 로고    scopus 로고
    • Modeling of asphaltene and other heavy deposition
    • Mansoori G.A. Modeling of asphaltene and other heavy deposition. J. Pet. Sci. Eng. 1997, 17:101-111.
    • (1997) J. Pet. Sci. Eng. , vol.17 , pp. 101-111
    • Mansoori, G.A.1
  • 16
    • 84864015918 scopus 로고    scopus 로고
    • http://www.mattmorten.co.uk/blog/tag/neural-networks.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.