-
1
-
-
33745183356
-
The p38γMAPK signaling pathway: A major regulator of skeletal muscle development
-
Keren A, Tamir Y, Bengal E. The p38γMAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 2006;252:224-230.
-
(2006)
Mol Cell Endocrinol
, vol.252
, pp. 224-230
-
-
Keren, A.1
Tamir, Y.2
Bengal, E.3
-
2
-
-
0033965158
-
The p38γsignal transduction pathway: Activation and function
-
Ono K, Han J. The p38γsignal transduction pathway: activation and function. Cell Signal 2000;12:1-13.
-
(2000)
Cell Signal
, vol.12
, pp. 1-13
-
-
Ono, K.1
Han, J.2
-
3
-
-
33646829136
-
TAB-1 modulates intracellular localization of p38γMAP kinase and downstream signaling
-
Lu G, Kang YJ, Han J, Herschman HR, Stefani E, Wang Y. TAB-1 modulates intracellular localization of p38γMAP kinase and downstream signaling. J Biol Chem 2006;281:6087-6095.
-
(2006)
J Biol Chem
, vol.281
, pp. 6087-6095
-
-
Lu, G.1
Kang, Y.J.2
Han, J.3
Herschman, H.R.4
Stefani, E.5
Wang, Y.6
-
4
-
-
16844367955
-
Alternative p38γactivation pathway mediated by T cell receptor-proximal tyrosine kinases
-
Salvador JM, Mittelstadt PR, Guszczynski T, Copeland TD, Yamaguchi H, Appella E, et al. Alternative p38γactivation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat Immunol 2005;6: 390-395.
-
(2005)
Nat Immunol
, vol.6
, pp. 390-395
-
-
Salvador, J.M.1
Mittelstadt, P.R.2
Guszczynski, T.3
Copeland, T.D.4
Yamaguchi, H.5
Appella, E.6
-
5
-
-
20444496117
-
Regulation of vertebrate myotome development by the p38γMAP kinase-MEF2 signaling pathway
-
de Angelis L, Zhao J, Andreucci JJ, Olson EN, Cossu G, McDermott JC. Regulation of vertebrate myotome development by the p38γMAP kinase-MEF2 signaling pathway. Dev Biol 2005;283:171-179.
-
(2005)
Dev Biol
, vol.283
, pp. 171-179
-
-
de Angelis, L.1
Zhao, J.2
Andreucci, J.J.3
Olson, E.N.4
Cossu, G.5
McDermott, J.C.6
-
6
-
-
28244481523
-
p38γMAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development
-
Keren A, Bengal E, Frank D. p38γMAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development. Dev Biol 2005;288:73-86.
-
(2005)
Dev Biol
, vol.288
, pp. 73-86
-
-
Keren, A.1
Bengal, E.2
Frank, D.3
-
7
-
-
0034697904
-
Requirement for p38γlpha in erythropoietin expression: A role for stress kinases in erythropoiesis
-
Tamura K, Sudo T, Senftleben U, Dadak AM, Johnson R, Karin M. Requirement for p38γlpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 2000;102:221-231.
-
(2000)
Cell
, vol.102
, pp. 221-231
-
-
Tamura, K.1
Sudo, T.2
Senftleben, U.3
Dadak, A.M.4
Johnson, R.5
Karin, M.6
-
8
-
-
0033622470
-
Essential role of p38γlpha MAP kinase in placental but not embryonic cardiovascular development
-
Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, et al. Essential role of p38γlpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 2000;6:109-116.
-
(2000)
Mol Cell
, vol.6
, pp. 109-116
-
-
Adams, R.H.1
Porras, A.2
Alonso, G.3
Jones, M.4
Vintersten, K.5
Panelli, S.6
-
9
-
-
33947100032
-
Genetic analysis of p38γMAP kinases in myogenesis: Fundamental role of p38γlpha in abrogating myoblast proliferation
-
Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa- Victor P, et al. Genetic analysis of p38γMAP kinases in myogenesis: fundamental role of p38γlpha in abrogating myoblast proliferation. EMBO J 2007;26:1245-1256.
-
(2007)
EMBO J
, vol.26
, pp. 1245-1256
-
-
Perdiguero, E.1
Ruiz-Bonilla, V.2
Gresh, L.3
Hui, L.4
Ballestar, E.5
Sousa-Victor, P.6
-
10
-
-
0033567706
-
The structure of phosphorylated p38γamma is monomeric and reveals a conserved activation-loop conformation
-
Bellon S, Fitzgibbon MJ, Fox T, Hsiao HM, Wilson KP. The structure of phosphorylated p38γamma is monomeric and reveals a conserved activation-loop conformation. Structure 1999;7:1057-1065.
-
(1999)
Structure
, vol.7
, pp. 1057-1065
-
-
Bellon, S.1
Fitzgibbon, M.J.2
Fox, T.3
Hsiao, H.M.4
Wilson, K.P.5
-
11
-
-
0038054248
-
ERK6 is expressed in a developmentally regulated manner in rodent skeletal muscle
-
Tortorella LL, Lin CB, Pilch PF. ERK6 is expressed in a developmentally regulated manner in rodent skeletal muscle. Biochem Biophys Res Commun 2003;306:163-168.
-
(2003)
Biochem Biophys Res Commun
, vol.306
, pp. 163-168
-
-
Tortorella, L.L.1
Lin, C.B.2
Pilch, P.F.3
-
12
-
-
0029911710
-
ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation
-
Lechner C, Zahalka MA, Giot JF, Moller NP, Ullrich A. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci USA 1996;93:4355-4359.
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 4355-4359
-
-
Lechner, C.1
Zahalka, M.A.2
Giot, J.F.3
Moller, N.P.4
Ullrich, A.5
-
13
-
-
0029913458
-
SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases
-
Mertens S, Craxton M, Goedert M. SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Lett 1996;383:273-276.
-
(1996)
FEBS Lett
, vol.383
, pp. 273-276
-
-
Mertens, S.1
Craxton, M.2
Goedert, M.3
-
14
-
-
0030581626
-
The primary structure of p38γ: A new member of p38γgroup of MAP kinases
-
Li Z, Jiang Y, Ulevitch RJ, Han J. The primary structure of p38γ: a new member of p38γgroup of MAP kinases. Biochem Biophys Res Commun 1996;228:334-340.
-
(1996)
Biochem Biophys Res Commun
, vol.228
, pp. 334-340
-
-
Li, Z.1
Jiang, Y.2
Ulevitch, R.J.3
Han, J.4
-
15
-
-
70949087409
-
p38γamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice
-
Pogozelski AR, Geng T, Li P, Yin X, Lira VA, Zhang M, et al. p38γamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS One 2009;4: e7934.
-
(2009)
PLoS One
, vol.4
-
-
Pogozelski, A.R.1
Geng, T.2
Li, P.3
Yin, X.4
Lira, V.A.5
Zhang, M.6
-
16
-
-
0034595213
-
MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type
-
Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 2000;19:1963-1973.
-
(2000)
EMBO J
, vol.19
, pp. 1963-1973
-
-
Wu, H.1
Naya, F.J.2
McKinsey, T.A.3
Mercer, B.4
Shelton, J.M.5
Chin, E.R.6
-
17
-
-
0034681315
-
Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo
-
Naya FJ, Mercer B, Shelton J, Richardson JA, Williams RS, Olson EN. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J Biol Chem 2000;275:4545-4548.
-
(2000)
J Biol Chem
, vol.275
, pp. 4545-4548
-
-
Naya, F.J.1
Mercer, B.2
Shelton, J.3
Richardson, J.A.4
Williams, R.S.5
Olson, E.N.6
-
18
-
-
0033618462
-
Calcineurin is required for skeletal muscle hypertrophy
-
Dunn SE, Burns JL, Michel RN. Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem 1999;274:21908-21912.
-
(1999)
J Biol Chem
, vol.274
, pp. 21908-21912
-
-
Dunn, S.E.1
Burns, J.L.2
Michel, R.N.3
-
19
-
-
0032529188
-
A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type
-
Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 1998;12:2499-2509.
-
(1998)
Genes Dev
, vol.12
, pp. 2499-2509
-
-
Chin, E.R.1
Olson, E.N.2
Richardson, J.A.3
Yang, Q.4
Humphries, C.5
Shelton, J.M.6
-
20
-
-
34848858523
-
Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers
-
Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest 2007;117: 2459-2467.
-
(2007)
J Clin Invest
, vol.117
, pp. 2459-2467
-
-
Potthoff, M.J.1
Wu, H.2
Arnold, M.A.3
Shelton, J.M.4
Backs, J.5
McAnally, J.6
-
21
-
-
0037102256
-
Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
-
Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002;418:797-801.
-
(2002)
Nature
, vol.418
, pp. 797-801
-
-
Lin, J.1
Wu, H.2
Tarr, P.T.3
Zhang, C.Y.4
Wu, Z.5
Boss, O.6
-
22
-
-
35648937073
-
Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals
-
Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 2007;282:30014-30021.
-
(2007)
J Biol Chem
, vol.282
, pp. 30014-30021
-
-
Handschin, C.1
Chin, S.2
Li, P.3
Liu, F.4
Maratos-Flier, E.5
Lebrasseur, N.K.6
-
23
-
-
0033625759
-
Involvement of the MKK6-p38γamma cascade in gamma-radiationinduced cell cycle arrest
-
Wang X, McGowan CH, Zhao M, He L, Downey JS, Fearns C, et al. Involvement of the MKK6-p38γamma cascade in gamma-radiationinduced cell cycle arrest. Mol Cell Biol 2000;20:4543-4552.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 4543-4552
-
-
Wang, X.1
McGowan, C.H.2
Zhao, M.3
He, L.4
Downey, J.S.5
Fearns, C.6
-
24
-
-
2442700030
-
Phosphorylation of the mitochondrial protein Sab by stress-activated protein kinase 3
-
Court NW, Kuo I, Quigley O, Bogoyevitch MA. Phosphorylation of the mitochondrial protein Sab by stress-activated protein kinase 3. Biochem Biophys Res Commun 2004;319:130-137.
-
(2004)
Biochem Biophys Res Commun
, vol.319
, pp. 130-137
-
-
Court, N.W.1
Kuo, I.2
Quigley, O.3
Bogoyevitch, M.A.4
-
25
-
-
18844446245
-
Outer membrane protein 25-a mitochondrial anchor and inhibitor of stress-activated protein kinase-3
-
Court NW, Ingley E, Klinken SP, Bogoyevitch MA. Outer membrane protein 25-a mitochondrial anchor and inhibitor of stress-activated protein kinase-3. Biochim Biophys Acta 2005;1744:68-75.
-
(2005)
Biochim Biophys Acta
, vol.1744
, pp. 68-75
-
-
Court, N.W.1
Ingley, E.2
Klinken, S.P.3
Bogoyevitch, M.A.4
-
26
-
-
0034748978
-
Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload
-
Carlson CJ, Fan Z, Gordon SE, Booth FW. Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload. J Appl Physiol 2001;91:2079-2087.
-
(2001)
J Appl Physiol
, vol.91
, pp. 2079-2087
-
-
Carlson, C.J.1
Fan, Z.2
Gordon, S.E.3
Booth, F.W.4
-
27
-
-
0023608027
-
Subunit composition of rodent isomyosins and their distribution in hindlimb skeletal muscles
-
Tsika RW, Herrick RE, Baldwin KM. Subunit composition of rodent isomyosins and their distribution in hindlimb skeletal muscles. J Appl Physiol 1987;63:2101-2110.
-
(1987)
J Appl Physiol
, vol.63
, pp. 2101-2110
-
-
Tsika, R.W.1
Herrick, R.E.2
Baldwin, K.M.3
-
28
-
-
34250677693
-
Extracellular signal-regulated kinase pathway is differentially involved in beta-agonist-induced hypertrophy in slow and fast muscles
-
Shi H, Zeng C, Ricome A, Hannon KM, Grant AL, Gerrard DE. Extracellular signal-regulated kinase pathway is differentially involved in beta-agonist-induced hypertrophy in slow and fast muscles. Am J Physiol Cell Physiol 2007;292:C1681-C1689.
-
(2007)
Am J Physiol Cell Physiol
, vol.292
-
-
Shi, H.1
Zeng, C.2
Ricome, A.3
Hannon, K.M.4
Grant, A.L.5
Gerrard, D.E.6
|