메뉴 건너뛰기




Volumn 45, Issue 2, 2012, Pages 266-273

P38γ activity is required for maintenance of slow skeletal muscle size

Author keywords

Development; Mice; P38 ; Phosphorylation; Skeletal muscle

Indexed keywords

MITOGEN ACTIVATED PROTEIN KINASE P38; MITOGEN ACTIVATED PROTEIN KINASE P38 GAMMA; UNCLASSIFIED DRUG;

EID: 84862954226     PISSN: 0148639X     EISSN: 10974598     Source Type: Journal    
DOI: 10.1002/mus.22289     Document Type: Article
Times cited : (19)

References (28)
  • 1
    • 33745183356 scopus 로고    scopus 로고
    • The p38γMAPK signaling pathway: A major regulator of skeletal muscle development
    • Keren A, Tamir Y, Bengal E. The p38γMAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 2006;252:224-230.
    • (2006) Mol Cell Endocrinol , vol.252 , pp. 224-230
    • Keren, A.1    Tamir, Y.2    Bengal, E.3
  • 2
    • 0033965158 scopus 로고    scopus 로고
    • The p38γsignal transduction pathway: Activation and function
    • Ono K, Han J. The p38γsignal transduction pathway: activation and function. Cell Signal 2000;12:1-13.
    • (2000) Cell Signal , vol.12 , pp. 1-13
    • Ono, K.1    Han, J.2
  • 3
    • 33646829136 scopus 로고    scopus 로고
    • TAB-1 modulates intracellular localization of p38γMAP kinase and downstream signaling
    • Lu G, Kang YJ, Han J, Herschman HR, Stefani E, Wang Y. TAB-1 modulates intracellular localization of p38γMAP kinase and downstream signaling. J Biol Chem 2006;281:6087-6095.
    • (2006) J Biol Chem , vol.281 , pp. 6087-6095
    • Lu, G.1    Kang, Y.J.2    Han, J.3    Herschman, H.R.4    Stefani, E.5    Wang, Y.6
  • 5
    • 20444496117 scopus 로고    scopus 로고
    • Regulation of vertebrate myotome development by the p38γMAP kinase-MEF2 signaling pathway
    • de Angelis L, Zhao J, Andreucci JJ, Olson EN, Cossu G, McDermott JC. Regulation of vertebrate myotome development by the p38γMAP kinase-MEF2 signaling pathway. Dev Biol 2005;283:171-179.
    • (2005) Dev Biol , vol.283 , pp. 171-179
    • de Angelis, L.1    Zhao, J.2    Andreucci, J.J.3    Olson, E.N.4    Cossu, G.5    McDermott, J.C.6
  • 6
    • 28244481523 scopus 로고    scopus 로고
    • p38γMAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development
    • Keren A, Bengal E, Frank D. p38γMAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development. Dev Biol 2005;288:73-86.
    • (2005) Dev Biol , vol.288 , pp. 73-86
    • Keren, A.1    Bengal, E.2    Frank, D.3
  • 7
    • 0034697904 scopus 로고    scopus 로고
    • Requirement for p38γlpha in erythropoietin expression: A role for stress kinases in erythropoiesis
    • Tamura K, Sudo T, Senftleben U, Dadak AM, Johnson R, Karin M. Requirement for p38γlpha in erythropoietin expression: a role for stress kinases in erythropoiesis. Cell 2000;102:221-231.
    • (2000) Cell , vol.102 , pp. 221-231
    • Tamura, K.1    Sudo, T.2    Senftleben, U.3    Dadak, A.M.4    Johnson, R.5    Karin, M.6
  • 8
    • 0033622470 scopus 로고    scopus 로고
    • Essential role of p38γlpha MAP kinase in placental but not embryonic cardiovascular development
    • Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S, et al. Essential role of p38γlpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 2000;6:109-116.
    • (2000) Mol Cell , vol.6 , pp. 109-116
    • Adams, R.H.1    Porras, A.2    Alonso, G.3    Jones, M.4    Vintersten, K.5    Panelli, S.6
  • 9
    • 33947100032 scopus 로고    scopus 로고
    • Genetic analysis of p38γMAP kinases in myogenesis: Fundamental role of p38γlpha in abrogating myoblast proliferation
    • Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa- Victor P, et al. Genetic analysis of p38γMAP kinases in myogenesis: fundamental role of p38γlpha in abrogating myoblast proliferation. EMBO J 2007;26:1245-1256.
    • (2007) EMBO J , vol.26 , pp. 1245-1256
    • Perdiguero, E.1    Ruiz-Bonilla, V.2    Gresh, L.3    Hui, L.4    Ballestar, E.5    Sousa-Victor, P.6
  • 10
    • 0033567706 scopus 로고    scopus 로고
    • The structure of phosphorylated p38γamma is monomeric and reveals a conserved activation-loop conformation
    • Bellon S, Fitzgibbon MJ, Fox T, Hsiao HM, Wilson KP. The structure of phosphorylated p38γamma is monomeric and reveals a conserved activation-loop conformation. Structure 1999;7:1057-1065.
    • (1999) Structure , vol.7 , pp. 1057-1065
    • Bellon, S.1    Fitzgibbon, M.J.2    Fox, T.3    Hsiao, H.M.4    Wilson, K.P.5
  • 11
    • 0038054248 scopus 로고    scopus 로고
    • ERK6 is expressed in a developmentally regulated manner in rodent skeletal muscle
    • Tortorella LL, Lin CB, Pilch PF. ERK6 is expressed in a developmentally regulated manner in rodent skeletal muscle. Biochem Biophys Res Commun 2003;306:163-168.
    • (2003) Biochem Biophys Res Commun , vol.306 , pp. 163-168
    • Tortorella, L.L.1    Lin, C.B.2    Pilch, P.F.3
  • 13
    • 0029913458 scopus 로고    scopus 로고
    • SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases
    • Mertens S, Craxton M, Goedert M. SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Lett 1996;383:273-276.
    • (1996) FEBS Lett , vol.383 , pp. 273-276
    • Mertens, S.1    Craxton, M.2    Goedert, M.3
  • 14
    • 0030581626 scopus 로고    scopus 로고
    • The primary structure of p38γ: A new member of p38γgroup of MAP kinases
    • Li Z, Jiang Y, Ulevitch RJ, Han J. The primary structure of p38γ: a new member of p38γgroup of MAP kinases. Biochem Biophys Res Commun 1996;228:334-340.
    • (1996) Biochem Biophys Res Commun , vol.228 , pp. 334-340
    • Li, Z.1    Jiang, Y.2    Ulevitch, R.J.3    Han, J.4
  • 15
    • 70949087409 scopus 로고    scopus 로고
    • p38γamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice
    • Pogozelski AR, Geng T, Li P, Yin X, Lira VA, Zhang M, et al. p38γamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS One 2009;4: e7934.
    • (2009) PLoS One , vol.4
    • Pogozelski, A.R.1    Geng, T.2    Li, P.3    Yin, X.4    Lira, V.A.5    Zhang, M.6
  • 16
    • 0034595213 scopus 로고    scopus 로고
    • MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type
    • Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J 2000;19:1963-1973.
    • (2000) EMBO J , vol.19 , pp. 1963-1973
    • Wu, H.1    Naya, F.J.2    McKinsey, T.A.3    Mercer, B.4    Shelton, J.M.5    Chin, E.R.6
  • 18
    • 0033618462 scopus 로고    scopus 로고
    • Calcineurin is required for skeletal muscle hypertrophy
    • Dunn SE, Burns JL, Michel RN. Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem 1999;274:21908-21912.
    • (1999) J Biol Chem , vol.274 , pp. 21908-21912
    • Dunn, S.E.1    Burns, J.L.2    Michel, R.N.3
  • 19
    • 0032529188 scopus 로고    scopus 로고
    • A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type
    • Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 1998;12:2499-2509.
    • (1998) Genes Dev , vol.12 , pp. 2499-2509
    • Chin, E.R.1    Olson, E.N.2    Richardson, J.A.3    Yang, Q.4    Humphries, C.5    Shelton, J.M.6
  • 20
    • 34848858523 scopus 로고    scopus 로고
    • Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers
    • Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest 2007;117: 2459-2467.
    • (2007) J Clin Invest , vol.117 , pp. 2459-2467
    • Potthoff, M.J.1    Wu, H.2    Arnold, M.A.3    Shelton, J.M.4    Backs, J.5    McAnally, J.6
  • 21
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
    • Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature 2002;418:797-801.
    • (2002) Nature , vol.418 , pp. 797-801
    • Lin, J.1    Wu, H.2    Tarr, P.T.3    Zhang, C.Y.4    Wu, Z.5    Boss, O.6
  • 22
    • 35648937073 scopus 로고    scopus 로고
    • Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals
    • Handschin C, Chin S, Li P, Liu F, Maratos-Flier E, Lebrasseur NK, et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1alpha muscle-specific knock-out animals. J Biol Chem 2007;282:30014-30021.
    • (2007) J Biol Chem , vol.282 , pp. 30014-30021
    • Handschin, C.1    Chin, S.2    Li, P.3    Liu, F.4    Maratos-Flier, E.5    Lebrasseur, N.K.6
  • 23
    • 0033625759 scopus 로고    scopus 로고
    • Involvement of the MKK6-p38γamma cascade in gamma-radiationinduced cell cycle arrest
    • Wang X, McGowan CH, Zhao M, He L, Downey JS, Fearns C, et al. Involvement of the MKK6-p38γamma cascade in gamma-radiationinduced cell cycle arrest. Mol Cell Biol 2000;20:4543-4552.
    • (2000) Mol Cell Biol , vol.20 , pp. 4543-4552
    • Wang, X.1    McGowan, C.H.2    Zhao, M.3    He, L.4    Downey, J.S.5    Fearns, C.6
  • 24
    • 2442700030 scopus 로고    scopus 로고
    • Phosphorylation of the mitochondrial protein Sab by stress-activated protein kinase 3
    • Court NW, Kuo I, Quigley O, Bogoyevitch MA. Phosphorylation of the mitochondrial protein Sab by stress-activated protein kinase 3. Biochem Biophys Res Commun 2004;319:130-137.
    • (2004) Biochem Biophys Res Commun , vol.319 , pp. 130-137
    • Court, N.W.1    Kuo, I.2    Quigley, O.3    Bogoyevitch, M.A.4
  • 25
    • 18844446245 scopus 로고    scopus 로고
    • Outer membrane protein 25-a mitochondrial anchor and inhibitor of stress-activated protein kinase-3
    • Court NW, Ingley E, Klinken SP, Bogoyevitch MA. Outer membrane protein 25-a mitochondrial anchor and inhibitor of stress-activated protein kinase-3. Biochim Biophys Acta 2005;1744:68-75.
    • (2005) Biochim Biophys Acta , vol.1744 , pp. 68-75
    • Court, N.W.1    Ingley, E.2    Klinken, S.P.3    Bogoyevitch, M.A.4
  • 26
    • 0034748978 scopus 로고    scopus 로고
    • Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload
    • Carlson CJ, Fan Z, Gordon SE, Booth FW. Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload. J Appl Physiol 2001;91:2079-2087.
    • (2001) J Appl Physiol , vol.91 , pp. 2079-2087
    • Carlson, C.J.1    Fan, Z.2    Gordon, S.E.3    Booth, F.W.4
  • 27
    • 0023608027 scopus 로고
    • Subunit composition of rodent isomyosins and their distribution in hindlimb skeletal muscles
    • Tsika RW, Herrick RE, Baldwin KM. Subunit composition of rodent isomyosins and their distribution in hindlimb skeletal muscles. J Appl Physiol 1987;63:2101-2110.
    • (1987) J Appl Physiol , vol.63 , pp. 2101-2110
    • Tsika, R.W.1    Herrick, R.E.2    Baldwin, K.M.3
  • 28
    • 34250677693 scopus 로고    scopus 로고
    • Extracellular signal-regulated kinase pathway is differentially involved in beta-agonist-induced hypertrophy in slow and fast muscles
    • Shi H, Zeng C, Ricome A, Hannon KM, Grant AL, Gerrard DE. Extracellular signal-regulated kinase pathway is differentially involved in beta-agonist-induced hypertrophy in slow and fast muscles. Am J Physiol Cell Physiol 2007;292:C1681-C1689.
    • (2007) Am J Physiol Cell Physiol , vol.292
    • Shi, H.1    Zeng, C.2    Ricome, A.3    Hannon, K.M.4    Grant, A.L.5    Gerrard, D.E.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.