-
2
-
-
33750968972
-
Bayes and asymptotically pointwise optimal stopping rules for the detection of influenza epidemics
-
M. Baron. Bayes and asymptotically pointwise optimal stopping rules for the detection of influenza epidemics. Case Studies in Bayesian Statistics, 6:153-163, 2002.
-
(2002)
Case Studies in Bayesian Statistics
, vol.6
, pp. 153-163
-
-
Baron, M.1
-
4
-
-
84890768200
-
Measuring user influence in twitter: The million follower fallacy
-
Washington DC, USA, May
-
Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P. Gummadi. Measuring user influence in twitter: The million follower fallacy. In Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM), Washington DC, USA, May 2010.
-
(2010)
Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM)
-
-
Cha, M.1
Haddadi, H.2
Benevenuto, F.3
Gummadi, K.P.4
-
5
-
-
77956551868
-
Twittering for earth: A study on the impact of microblogging activism on earth hour 2009 in Australia
-
M. Cheong and V. Lee. Twittering for Earth: A Study on the Impact of Microblogging Activism on Earth Hour 2009 in Australia. Intelligent Information and Database Systems, pages 114-123, 2010.
-
(2010)
Intelligent Information and Database Systems
, pp. 114-123
-
-
Cheong, M.1
Lee, V.2
-
6
-
-
84867086419
-
Prior distributions for variance parameters in hierarchical models
-
A. Gelman. Prior distributions for variance parameters in hierarchical models. Bayesian analysis, 1(3):515-533, 2006.
-
(2006)
Bayesian Analysis
, vol.1
, Issue.3
, pp. 515-533
-
-
Gelman, A.1
-
7
-
-
43449135033
-
Why we twitter: Understanding microblogging usage and communities
-
DOI 10.1145/1348549.1348556, Joint Ninth WebKDD and First SNA-KDD Worshop 2007 on Web Mining and Social Network Analysis
-
A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter: understanding microblogging usage and communities. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis, pages 56-65. ACM, 2007. (Pubitemid 351665610)
-
(2007)
Joint Ninth WebKDD and First SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis
, pp. 56-65
-
-
Java, A.1
Song, X.2
Finin, T.3
Tseng, B.4
-
10
-
-
0033619993
-
Monitoring epidemiologic surveillance data using hidden Markov models
-
DOI 10.1002/(SICI)1097-0258(19991230)18:24<3463::AID-SIM409>3.0. CO;2-I
-
Y. Le Strat and F. Carrat. Monitoring epidemiologic surveillance data using hidden Markov models. Statistics in Medicine, 18(24):3463-3478, 1999. (Pubitemid 30041360)
-
(1999)
Statistics in Medicine
, vol.18
, Issue.24
, pp. 3463-3478
-
-
Le Strat, Y.1
Carrat, F.2
-
12
-
-
70449411807
-
The BUGS project: Evolution, critique and future directions
-
D. Lunn, D. Spiegelhalter, A. Thomas, and N. Best. The BUGS project: Evolution, critique and future directions. Statistics in medicine, 28(25):3049-3067, 2009.
-
(2009)
Statistics in Medicine
, vol.28
, Issue.25
, pp. 3049-3067
-
-
Lunn, D.1
Spiegelhalter, D.2
Thomas, A.3
Best, N.4
-
13
-
-
33947410667
-
Bayesian data mining for health surveillance
-
A.B. Lawson and K. Kleinman, editors John Wiley & Sons Inc
-
D. Madigan. Bayesian data mining for health surveillance. In A.B. Lawson and K. Kleinman, editors, Spatial and syndromic surveillance for public health, pages 203-221. John Wiley & Sons Inc, 2005.
-
(2005)
Spatial and Syndromic Surveillance for Public Health
, pp. 203-221
-
-
Madigan, D.1
-
14
-
-
53349151968
-
Bayesian Markov switching models for the early detection of influenza epidemics
-
September
-
Miguel a Martínez-Beneito, David Conesa, Antonio López-Quílez, and Aurora López-Maside. Bayesian Markov switching models for the early detection of influenza epidemics. Statistics in medicine, 27(22):4455-68, September 2008.
-
(2008)
Statistics in Medicine
, vol.27
, Issue.22
, pp. 4455-4468
-
-
Martínez-Beneito, M.A.1
Conesa, D.2
López-Quílez, A.3
López-Maside, A.4
-
16
-
-
60549110717
-
-
Available at
-
World Health Organization. Influenza fact sheet. Available at http://www.who.int/mediacentre/factsheets/fs211/en/.
-
Influenza Fact Sheet
-
-
-
17
-
-
0024962743
-
Is it chaos, or is it just noise?
-
(Washington)
-
R. Pool. Is it chaos, or is it just noise? Science(Washington), 243 (4887):25-25, 1989.
-
(1989)
Science
, vol.243
, Issue.4887
, pp. 25-25
-
-
Pool, R.1
-
20
-
-
33744823526
-
A Bayesian dynamic model for influenza surveillance
-
DOI 10.1002/sim.2566
-
P. Sebastiani, KD Mandl, P. Szolovits, IS Kohane, and MF Ramoni. A Bayesian dynamic model for influenza surveillance. Statistics in medicine, 25(11):1803-1816, 2006. (Pubitemid 43826832)
-
(2006)
Statistics in Medicine
, vol.25
, Issue.11
, pp. 1803-1816
-
-
Sebastiani, P.1
Mandl, K.D.2
Szolovits, P.3
Kohane, I.S.4
Ramoni, M.F.5
-
21
-
-
0001138054
-
Methods for current statistical analysis of excess pneumonia-influenza deaths
-
R.E. Serfling. Methods for current statistical analysis of excess pneumonia-influenza deaths. Public Health Reports, 78(6):494, 1963.
-
(1963)
Public Health Reports
, vol.78
, Issue.6
, pp. 494
-
-
Serfling, R.E.1
-
24
-
-
77950897279
-
Twitterrank: Finding topic-sensitive influential twitterers
-
ACM
-
J. Weng, E.P. Lim, J. Jiang, and Q. He. Twitterrank: finding topic-sensitive influential twitterers. In Proceedings of the third ACM international conference on Web search and data mining, pages 261-270. ACM, 2010.
-
(2010)
Proceedings of the Third ACM International Conference on Web Search and Data Mining
, pp. 261-270
-
-
Weng, J.1
Lim, E.P.2
Jiang, J.3
He, Q.4
|