메뉴 건너뛰기




Volumn 25, Issue 10, 2011, Pages 1697-1715

Predicting potential distributions of geographic events using one-class data: Concepts and methods

Author keywords

Ecological niche modelling; Geographic one class data; Maximum entropy; One class support vector machine; Positive and unlabelled learning

Indexed keywords

ACCURACY ASSESSMENT; ALGORITHM; CLASSIFICATION; DATA SET; EFFICIENCY MEASUREMENT; GIS; MAXIMUM ENTROPY ANALYSIS; PREDICTION; SPATIAL DISTRIBUTION; VECTOR;

EID: 84862908217     PISSN: 13658816     EISSN: 13623087     Source Type: Journal    
DOI: 10.1080/13658816.2010.546360     Document Type: Article
Times cited : (22)

References (59)
  • 2
    • 0032674505 scopus 로고    scopus 로고
    • Statistical models for text segmentation
    • Beeferman, D., Berger, A., and Lafferty, J., 1999. Statistical models for text segmentation. Machine Learning, 34 (1), 177-210.
    • (1999) Machine Learning , vol.34 , Issue.1 , pp. 177-210
    • Beeferman, D.1    Berger, A.2    Lafferty, J.3
  • 4
    • 0033496717 scopus 로고    scopus 로고
    • Use of GIS technology in the prediction and monitoring of landslide hazard
    • Carrara, A., et al., 1999. Use of GIS technology in the prediction and monitoring of landslide hazard. Natural Hazards, 20 (2), 117-135.
    • (1999) Natural Hazards , vol.20 , Issue.2 , pp. 117-135
    • Carrara, A.1
  • 5
    • 0001662441 scopus 로고    scopus 로고
    • The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameters
    • Castelli, V. and Cover, T.M., 1996. The relative value of labeled and unlabeled samples in pattern recognition with an unknown mixing parameters. IEEE Transaction on Information Theory, 42 (6), 2102-2117.
    • (1996) IEEE Transaction on Information Theory , vol.42 , Issue.6 , pp. 2102-2117
    • Castelli, V.1    Cover, T.M.2
  • 9
    • 84864038934 scopus 로고    scopus 로고
    • Correcting sample selection bias in maximum entropy density estimation
    • In:, Cambridge, MA: MIT Press
    • Dudík, M., Schapire, R.E., and Phillips, S.J., 2005. Correcting sample selection bias in maximum entropy density estimation. In: Advances in Neural Information Processing Systems 18, Cambridge, MA: MIT Press, 323-330.
    • (2005) Advances in Neural Information Processing Systems , vol.18 , pp. 323-330
    • Dudík, M.1    Schapire, R.E.2    Phillips, S.J.3
  • 10
    • 0034730602 scopus 로고    scopus 로고
    • Interoperability of biodiversity databases: Biodiversity information on every desktop
    • Edwards, J.L., Lane, M.A., and Nielsen, E.S., 2000. Interoperability of biodiversity databases: biodiversity information on every desktop. Science, 289, 2312.
    • (2000) Science , vol.289 , pp. 2312
    • Edwards, J.L.1    Lane, M.A.2    Nielsen, E.S.3
  • 11
    • 33645917058 scopus 로고    scopus 로고
    • Novel methods improve prediction of species' distributions from occurrence data
    • Elith, J., et al., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29 (2), 129-151.
    • (2006) Ecography , vol.29 , Issue.2 , pp. 129-151
    • Elith, J.1
  • 12
    • 63849287596 scopus 로고    scopus 로고
    • Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models
    • Elith, J. and Graham, C.H., 2009. Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32 (1), 66-77.
    • (2009) Ecography , vol.32 , Issue.1 , pp. 66-77
    • Elith, J.1    Graham, C.H.2
  • 14
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • Foody, G.M., 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80 (1), 185-201.
    • (2002) Remote Sensing of Environment , vol.80 , Issue.1 , pp. 185-201
    • Foody, G.M.1
  • 15
    • 33747610735 scopus 로고    scopus 로고
    • Training set size requirements for the classification of a specific class
    • Foody, G.M., et al., 2006. Training set size requirements for the classification of a specific class. Remote Sensing of Environment, 104 (1), 1-14.
    • (2006) Remote Sensing of Environment , vol.104 , Issue.1 , pp. 1-14
    • Foody, G.M.1
  • 17
    • 24344493920 scopus 로고    scopus 로고
    • Predicting species distributions: Offering more than simple habitat models
    • Guisan, A. and Thuiller, W., 2005. Predicting species distributions: offering more than simple habitat models. Ecology Letters, 8 (9), 993-1009.
    • (2005) Ecology Letters , vol.8 , Issue.9 , pp. 993-1009
    • Guisan, A.1    Thuiller, W.2
  • 18
    • 9644281091 scopus 로고    scopus 로고
    • Support vector machines for predicting distribution of Sudden Oak Death in California
    • Guo, Q., Kelly, M., and Graham, C.H., 2005. Support vector machines for predicting distribution of Sudden Oak Death in California. Ecological Modelling, 182 (1), 75-90.
    • (2005) Ecological Modelling , vol.182 , Issue.1 , pp. 75-90
    • Guo, Q.1    Kelly, M.2    Graham, C.H.3
  • 19
    • 77957164186 scopus 로고    scopus 로고
    • ModEco: An integrated software package for ecological niche modeling
    • Guo, Q. and Liu, Y., 2010. ModEco: an integrated software package for ecological niche modeling. Ecography, 33 (4), 637-642.
    • (2010) Ecography , vol.33 , Issue.4 , pp. 637-642
    • Guo, Q.1    Liu, Y.2
  • 20
    • 0024878952 scopus 로고
    • Theory of the backpropagation neural network
    • In:, Washington, DC: IEEE
    • Hecht-Nielsen, R., 1989. Theory of the backpropagation neural network. In: International Joint Conference on Neural Networks, vol. 1, Washington, DC: IEEE, 593-605.
    • (1989) International Joint Conference on Neural Networks , vol.1 , pp. 593-605
    • Hecht-Nielsen, R.1
  • 21
    • 0000125534 scopus 로고
    • Sample selection bias as a specification error
    • Heckman, J.J., 1979. Sample selection bias as a specification error. Econometrica, 47 (1), 153-161.
    • (1979) Econometrica , vol.47 , Issue.1 , pp. 153-161
    • Heckman, J.J.1
  • 22
    • 0003337955 scopus 로고    scopus 로고
    • Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data?
    • Hirzel, A.H., et al., 2002. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology, 83 (7), 2027-2036.
    • (2002) Ecology , vol.83 , Issue.7 , pp. 2027-2036
    • Hirzel, A.H.1
  • 23
    • 0035891825 scopus 로고    scopus 로고
    • Assessing habitat-suitability models with a virtual species
    • Hirzel, A.H., Helfer, V., and Metral, F., 2001. Assessing habitat-suitability models with a virtual species. Ecological Modelling, 145 (2-3), 111-121.
    • (2001) Ecological Modelling , vol.145 , Issue.2-3 , pp. 111-121
    • Hirzel, A.H.1    Helfer, V.2    Metral, F.3
  • 24
    • 4944228528 scopus 로고    scopus 로고
    • Technical report. Taipei: Department of Computer Science and Information Engineering, National Taiwan University
    • Hsu, C., Chang, C., and Lin, C., 2003. A practical guide to support vector classification. Technical report. Taipei: Department of Computer Science and Information Engineering, National Taiwan University.
    • (2003) A practical guide to support vector classification
    • Hsu, C.1    Chang, C.2    Lin, C.3
  • 26
    • 0002233827 scopus 로고    scopus 로고
    • Estimating posterior probabilities in classification problems with neural networks
    • Hung, M.S., et al., 1996. Estimating posterior probabilities in classification problems with neural networks. International Journal of Computational Intelligence and Organizations, 1 (1), 49-60.
    • (1996) International Journal of Computational Intelligence and Organizations , vol.1 , Issue.1 , pp. 49-60
    • Hung, M.S.1
  • 27
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • Jaynes, E.T., 1957. Information theory and statistical mechanics. Physical Review, 106, 620-630.
    • (1957) Physical Review , vol.106 , pp. 620-630
    • Jaynes, E.T.1
  • 28
    • 0003309282 scopus 로고
    • Notes on present status and future prospects
    • In:, W.T. Grandy and L.H. Schick, eds, Dordrecht, The Netherlands: Kluwer
    • Jaynes, E.T., 1990. Notes on present status and future prospects. In: W.T. Grandy and L.H. Schick, eds. Maximum entropy and Bayesian methods. Dordrecht, The Netherlands: Kluwer.
    • (1990) Maximum entropy and Bayesian methods
    • Jaynes, E.T.1
  • 29
    • 54049102026 scopus 로고    scopus 로고
    • Not as good as they seem: The importance of concepts in species distribution modelling
    • Jiménez-Valverde, A., Lobo, J.M., and Hortal, J., 2008. Not as good as they seem: the importance of concepts in species distribution modelling. Diversity and Distributions, 14 (6), 885-890.
    • (2008) Diversity and Distributions , vol.14 , Issue.6 , pp. 885-890
    • Jiménez-Valverde, A.1    Lobo, J.M.2    Hortal, J.3
  • 30
    • 0742301742 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using a minimal number of queries
    • Kothari, R. and Jain, V., 2003. Learning from labeled and unlabeled data using a minimal number of queries. IEEE Transactions on Neural Networks, 14 (6), 1496-1505.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.6 , pp. 1496-1505
    • Kothari, R.1    Jain, V.2
  • 31
    • 1942516926 scopus 로고    scopus 로고
    • Learning with positive and unlabeled examples using weighted logistic regression
    • In:, Washington, DC: AAAI Press
    • Lee, W. and Liu, B., 2003. Learning with positive and unlabeled examples using weighted logistic regression. In: Proceedings of the Twentieth International Conference on Machine Learning, Washington, DC: AAAI Press, 448-455.
    • (2003) Proceedings of the Twentieth International Conference on Machine Learning , pp. 448-455
    • Lee, W.1    Liu, B.2
  • 32
    • 78149306870 scopus 로고    scopus 로고
    • Building text classifiers using positive and unlabeled examples
    • In:, Melbourne, Florida: IEEE
    • Liu, B., et al., 2003. Building text classifiers using positive and unlabeled examples. In: Third IEEE International Conference on Data Mining, Melbourne, Florida: IEEE, 179-186.
    • (2003) Third IEEE International Conference on Data Mining , pp. 179-186
    • Liu, B.1
  • 34
  • 35
    • 34547399927 scopus 로고    scopus 로고
    • A support vector domain description approach to supervised classification of remote sensing images
    • Muñoz-Marí, J., Bruzzone, L., and Camps-Vails, G., 2007b. A support vector domain description approach to supervised classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 45 (8), 2683-2692.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.8 , pp. 2683-2692
    • Muñoz-Marí, J.1    Bruzzone, L.2    Camps-Vails, G.3
  • 36
    • 0035531655 scopus 로고    scopus 로고
    • An empirical evaluation of probability estimation with neural networks
    • Palocsay, S.W., Stevens, S.P., and Brookshire, R.G., 2001. An empirical evaluation of probability estimation with neural networks. Neural Computing & Applications, 10 (1), 48-55.
    • (2001) Neural Computing & Applications , vol.10 , Issue.1 , pp. 48-55
    • Palocsay, S.W.1    Stevens, S.P.2    Brookshire, R.G.3
  • 37
    • 33646242418 scopus 로고    scopus 로고
    • Modelling distribution and abundance with presence-only data
    • Pearce, J.L. and Boyce, M.S., 2006. Modelling distribution and abundance with presence-only data. Journal of Applied Ecology, 43 (3), 405-412.
    • (2006) Journal of Applied Ecology , vol.43 , Issue.3 , pp. 405-412
    • Pearce, J.L.1    Boyce, M.S.2
  • 38
    • 0141856572 scopus 로고    scopus 로고
    • Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?
    • Pearson, R.G. and Dawson, T.P., 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12, 361-371.
    • (2003) Global Ecology and Biogeography , vol.12 , pp. 361-371
    • Pearson, R.G.1    Dawson, T.P.2
  • 39
    • 63849333773 scopus 로고    scopus 로고
    • Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data
    • Phillips, S.J., et al., 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19 (1), 181-197.
    • (2009) Ecological Applications , vol.19 , Issue.1 , pp. 181-197
    • Phillips, S.J.1
  • 40
    • 27944446350 scopus 로고    scopus 로고
    • Maximum entropy modeling of species geographic distributions
    • Phillips, S.J., Anderson, R.P. and Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190 (3-4), 231-259.
    • (2006) Ecological Modelling , vol.190 , Issue.3-4 , pp. 231-259
    • Phillips, S.J.1    Anderson, R.P.2    Schapire, R.E.3
  • 42
    • 0001595997 scopus 로고
    • Neural network classifiers estimate Bayesian a posteriori probabilities
    • Richard, M.D. and Lippmann, R.P., 1991. Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Computation, 3 (4), 461-483.
    • (1991) Neural Computation , vol.3 , Issue.4 , pp. 461-483
    • Richard, M.D.1    Lippmann, R.P.2
  • 43
    • 0030181951 scopus 로고    scopus 로고
    • A maximum entropy approach to adaptive statistical language modelling
    • Rosenfeld, R., 1996. A maximum entropy approach to adaptive statistical language modelling. Computer Speech and Language, 10 (3), 187-228.
    • (1996) Computer Speech and Language , vol.10 , Issue.3 , pp. 187-228
    • Rosenfeld, R.1
  • 45
    • 0000487102 scopus 로고    scopus 로고
    • Estimating the support of a high-dimensional distribution
    • Schölkopf, B., et al., 2001. Estimating the support of a high-dimensional distribution. Neural Computation, 13 (7), 1443-1471.
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1443-1471
    • Schölkopf, B.1
  • 46
    • 4644223644 scopus 로고    scopus 로고
    • An evaluation of methods for modelling species distributions
    • Segurado, P. and Araújo, M.B., 2004. An evaluation of methods for modelling species distributions. Journal of Biogeography, 31, 1555-1568.
    • (2004) Journal of Biogeography , vol.31 , pp. 1555-1568
    • Segurado, P.1    Araújo, M.B.2
  • 48
    • 64149114549 scopus 로고    scopus 로고
    • SVM-based data editing for enhanced one-class classification of remotely sensed imagery
    • Song, X., Fan, G. and Rao, M., 2008. SVM-based data editing for enhanced one-class classification of remotely sensed imagery. IEEE Geoscience and Remote Sensing Letters, 5 (2), 189-193.
    • (2008) IEEE Geoscience and Remote Sensing Letters , vol.5 , Issue.2 , pp. 189-193
    • Song, X.1    Fan, G.2    Rao, M.3
  • 49
    • 84866705994 scopus 로고    scopus 로고
    • [online], Space, Available from:, [Accessed 6 January 2010]
    • Space, 2009. Encyclopædia Britannica [online]. Available from: http://www.britannica.com/ EBchecked/topic/557313/space [Accessed 6 January 2010].
    • (2009) Encyclopædia Britannica
  • 51
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • Tax, D.M.J. and Duin, E., 1999. Support vector domain description. Pattern Recognition Letters, 20, 1191-1199.
    • (1999) Pattern Recognition Letters , vol.20 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, E.2
  • 52
    • 0013372968 scopus 로고    scopus 로고
    • Uniform object generation for optimizing one-class classifiers
    • Tax, D.M.J. and Duin, R.P.W., 2002. Uniform object generation for optimizing one-class classifiers. Journal of Machine Learning Research, 2, 155-173.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 155-173
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 53
    • 64649098806 scopus 로고    scopus 로고
    • BIOMOD-a platform for ensemble forecasting of species distributions
    • Thuiller, W., et al., 2009. BIOMOD-a platform for ensemble forecasting of species distributions. Ecography, 32 (3), 369-373.
    • (2009) Ecography , vol.32 , Issue.3 , pp. 369-373
    • Thuiller, W.1
  • 54
    • 34250322230 scopus 로고    scopus 로고
    • A comparative evaluation of presence-only methods for modelling species distribution
    • Tsoar, A., et al., 2007. A comparative evaluation of presence-only methods for modelling species distribution. Diversity and Distributions, 13 (4), 397-405.
    • (2007) Diversity and Distributions , vol.13 , Issue.4 , pp. 397-405
    • Tsoar, A.1
  • 55
    • 33747066452 scopus 로고    scopus 로고
    • Incorporating large unlabeled data to enhance EMclassification
    • Wu, X., 2006. Incorporating large unlabeled data to enhance EMclassification. Journal of Intelligent Information Systems, 26 (3), 211-226.
    • (2006) Journal of Intelligent Information Systems , vol.26 , Issue.3 , pp. 211-226
    • Wu, X.1
  • 56
    • 42549166500 scopus 로고    scopus 로고
    • How global is the Global Biodiversity Information Facility?
    • Yesson, C., et al., 2007. How global is the Global Biodiversity Information Facility? PLoS ONE, 2 (11), e1124.
    • (2007) PLoS ONE , vol.2 , Issue.11
    • Yesson, C.1
  • 58
    • 0037202451 scopus 로고    scopus 로고
    • Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns
    • Zaniewski, A.E., Lehmann, A., and Overton, J.M., 2002. Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecological Modelling, 157 (2-3), 261-280.
    • (2002) Ecological Modelling , vol.157 , Issue.2-3 , pp. 261-280
    • Zaniewski, A.E.1    Lehmann, A.2    Overton, J.M.3
  • 59
    • 72949090151 scopus 로고    scopus 로고
    • Learning with positive and unlabeled examples using topic sensitive PLSA
    • Zhou, K., et al., 2010. Learning with positive and unlabeled examples using topic sensitive PLSA. IEEE Transactions on Knowledge and Data Engineering, 22 (1), 46-58.
    • (2010) IEEE Transactions on Knowledge and Data Engineering , vol.22 , Issue.1 , pp. 46-58
    • Zhou, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.