메뉴 건너뛰기




Volumn 89, Issue , 2012, Pages 30-38

Incorporation of radius-info can be simple with SimpleMKL

Author keywords

Kernel methods; Minimal enclosing ball; Multiple kernel learning; Radius margin bound; Support vector machines

Indexed keywords

CLASSIFICATION PERFORMANCE; COMPLEX LEARNING; DATA SCATTERING; KERNEL METHODS; LEARNING PERFORMANCE; MINIMAL ENCLOSING BALL; MULTIPLE KERNEL LEARNING; RADIUS-MARGIN BOUND; THEORETIC DERIVATION; TRAINING DATA;

EID: 84862819880     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.01.035     Document Type: Article
Times cited : (20)

References (20)
  • 1
    • 84862822147 scopus 로고    scopus 로고
    • Multiple kernel learning, conic duality, and the smo algorithm, in: Proceedings of the 21st International Conference on Machine Learning
    • F.R. Bach, G.R.G. Lanckriet, M.I. Jordan, Multiple kernel learning, conic duality, and the smo algorithm, in: Proceedings of the 21st International Conference on Machine Learning, 2004, pp. 649-657.
    • (2004) , pp. 649-657
    • Bach, F.R.1    Lanckriet, G.R.G.2    Jordan, M.I.3
  • 4
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical test for comparing supervised classification learning algorithms
    • Dietterich T. Approximate statistical test for comparing supervised classification learning algorithms. Neural Comput. 1998, 10:1895-1923.
    • (1998) Neural Comput. , vol.10 , pp. 1895-1923
    • Dietterich, T.1
  • 8
    • 84862819831 scopus 로고    scopus 로고
    • Non-sparse regularization and efficient training with multiple kernels, CoRR, 2010, abs/1003.0079.
    • M. Kloft, U. Brefeld, S. Sonnenburg, A. Zien, Non-sparse regularization and efficient training with multiple kernels, CoRR, 2010, abs/1003.0079.
    • Kloft, M.1    Brefeld, U.2    Sonnenburg, S.3    Zien, A.4
  • 12
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • Chapelle O., Vapnik V., Bousquet O., Mukherjee S. Choosing multiple parameters for support vector machines. Mach. Learn. 2002, 46:131-159.
    • (2002) Mach. Learn. , vol.46 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 17
    • 48049087439 scopus 로고    scopus 로고
    • Feature selection with kernel class separability
    • Wang L. Feature selection with kernel class separability. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30:1534-1546.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , pp. 1534-1546
    • Wang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.