메뉴 건너뛰기




Volumn 236, Issue 16, 2012, Pages 4067-4081

On computation of the steady-state probability distribution of probabilistic Boolean networks with gene perturbation

Author keywords

Iterative methods; Perturbation bound; Probabilistic Boolean networks; Steady state probability distribution; Structured matrices

Indexed keywords

FAST ALGORITHMS; PERTURBATION BOUNDS; PROBABILISTIC BOOLEAN NETWORKS; SPECIAL STRUCTURE; STEADY STATE PROBABILITIES; STRUCTURED MATRIXES; TRANSITION PROBABILITY MATRIX;

EID: 84862818909     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2012.02.022     Document Type: Article
Times cited : (15)

References (25)
  • 4
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • T. Akutsu, S. Miyano, and S. Kuhara Identification of genetic networks from a small number of gene expression patterns under the Boolean network model Pac. Symp. Biocomput. 4 1999 17 28
    • (1999) Pac. Symp. Biocomput. , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 5
    • 33846424927 scopus 로고    scopus 로고
    • Control of Boolean networks: Hardness results and algorithms for tree structured networks
    • DOI 10.1016/j.jtbi.2006.09.023, PII S0022519306004334
    • T. Akutsu, M. Hayasida, W. Ching, and M. Ng Control of Boolean networks: hardness results and algorithms for tree structured networks J. Theor. Biol. 244 2007 670 679 (Pubitemid 46148979)
    • (2007) Journal of Theoretical Biology , vol.244 , Issue.4 , pp. 670-679
    • Akutsu, T.1    Hayashida, M.2    Ching, W.-K.3    Ng, M.K.4
  • 6
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • I. Shmulevich, E.R. Dougherty, S. Kim, and W. Zhang Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks Bioinformatics 18 2002 261 274 (Pubitemid 34183104)
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 7
    • 0036772705 scopus 로고    scopus 로고
    • Gene perturbation and intervention in probabilistic Boolean networks
    • I. Shmulevich, E.R. Dougherty, and W. Zhang Gene perturbation and intervention in probabilistic Boolean networks Bioinformatics 18 2002 1319 1331 (Pubitemid 35244189)
    • (2002) Bioinformatics , vol.18 , Issue.10 , pp. 1319-1331
    • Shmulevich, I.1    Dougherty, E.R.2    Zhang, W.3
  • 8
    • 33644618250 scopus 로고    scopus 로고
    • On construction of stochastic genetic networks based on gene expression sequences
    • DOI 10.1142/S0129065705000256, PII S0129065705000256
    • W. Ching, E. Fung, M. Ng, and T. Akutsu On construction of stochastic genetic networks based on gene expression sequences Int. J. Neural Syst. 15 2005 297 310 (Pubitemid 44099497)
    • (2005) International Journal of Neural Systems , vol.15 , Issue.4 , pp. 297-310
    • Ching, W.-K.1    Ng, M.M.2    Fung, E.S.3    Akutsu, T.4
  • 10
    • 34547840185 scopus 로고    scopus 로고
    • An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks
    • DOI 10.1093/bioinformatics/btm142
    • W. Ching, S. Zhang, M. Ng, and T. Akutsu An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks Bioinformatics 12 2007 1511 1518 (Pubitemid 47244476)
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1511-1518
    • Ching, W.-K.1    Zhang, S.2    Ng, M.K.3    Akutsu, T.4
  • 11
    • 0033725197 scopus 로고    scopus 로고
    • Mathematical modeling of gene network
    • P. Smolen, D. Baxter, and J. Byrne Mathematical modeling of gene network Neuron. 26 2000 567 580
    • (2000) Neuron. , vol.26 , pp. 567-580
    • Smolen, P.1    Baxter, D.2    Byrne, J.3
  • 12
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • S.A. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets J. Theor. Biol. 22 1969 437 467
    • (1969) J. Theor. Biol. , vol.22 , pp. 437-467
    • Kauffman, S.A.1
  • 14
    • 84862787546 scopus 로고    scopus 로고
    • Analysis and control of deterministic and probabilistic Boolean networks
    • Huma M. Lodhi, Muggleton Stephen, Wiley Book Series on Bioinformatics John Wiley & Sons, Inc.
    • T. Akutsu, and W. Ching Analysis and control of deterministic and probabilistic Boolean networks Huma M. Lodhi, Muggleton Stephen, Elements of Computational Systems Biology Wiley Book Series on Bioinformatics 2010 John Wiley & Sons, Inc. 235 256
    • (2010) Elements of Computational Systems Biology , pp. 235-256
    • Akutsu, T.1    Ching, W.2
  • 16
    • 24344481300 scopus 로고    scopus 로고
    • Steady-state probabilities for attractors in probabilistic Boolean networks
    • DOI 10.1016/j.sigpro.2005.02.016, PII S0165168405001179
    • M. Brun, E.R. Dougherty, and I. Shmulevich Steady-state probabilities for attractors in probabilistic Boolean networks Signal Processing 85 2005 1993 2013 (Pubitemid 41260387)
    • (2005) Signal Processing , vol.85 , Issue.10 , pp. 1993-2013
    • Brun, M.1    Dougherty, E.R.2    Shmulevich, I.3
  • 18
    • 0347164904 scopus 로고    scopus 로고
    • Control of stationary behavior in probabilistic Boolean networks by means of structural intervention
    • DOI 10.1142/S0218339002000706
    • I. Shmulevich, E.R. Dougherty, and W. Zhang Control of stationary behavior in probabilistic Boolean networks by means of structural intervention J. Biol. Syst. 10 2002 431 445 (Pubitemid 135712413)
    • (2002) Journal of Biological Systems , vol.10 , Issue.4 , pp. 431-445
    • Shmulevich, I.1    Dougherty, E.R.2    Zhang, W.3
  • 19
    • 84862778725 scopus 로고    scopus 로고
    • On construction of sparse probabilistic Boolean networks from a prescribed transition probability matrix
    • Lecture Notes in Operations Research
    • L. Cui, W. Li, and W. Ching On construction of sparse probabilistic Boolean networks from a prescribed transition probability matrix Proceedings of The Fourth International Conference on Computational Systems Biology Lecture Notes in Operations Research vol. 13 2010 227 234
    • (2010) Proceedings of the Fourth International Conference on Computational Systems Biology , vol.13 , pp. 227-234
    • Cui, L.1    Li, W.2    Ching, W.3
  • 20
    • 34547825448 scopus 로고    scopus 로고
    • Simulation study in probabilistic Boolean network models for genetic regulatory networks
    • S. Zhang, W. Ching, M. Ng, and T. Akutsu Simulation study in probabilistic Boolean network models for genetic regulatory networks Int. J. Data Min. Bioinform. 1 2007 217 240
    • (2007) Int. J. Data Min. Bioinform. , vol.1 , pp. 217-240
    • Zhang, S.1    Ching, W.2    Ng, M.3    Akutsu, T.4
  • 21
    • 79251593423 scopus 로고    scopus 로고
    • A matrix perturbation method for computing the steady-state probability distributions of probabilistic Boolean networks with gene perturbations
    • W. Xu, W. Ching, S. Zhang, W. Li, and X. Chen A matrix perturbation method for computing the steady-state probability distributions of probabilistic Boolean networks with gene perturbations J. Comput. Appl. Math. 235 2011 2242 2251
    • (2011) J. Comput. Appl. Math. , vol.235 , pp. 2242-2251
    • Xu, W.1    Ching, W.2    Zhang, S.3    Li, W.4    Chen, X.5
  • 24
    • 0033725698 scopus 로고    scopus 로고
    • Perturbation analysis of singular linear systems with index one
    • Y. Wei Perturbation analysis of singular linear systems with index one Int. J. Comput. Math. 74 2000 483 491
    • (2000) Int. J. Comput. Math. , vol.74 , pp. 483-491
    • Wei, Y.1
  • 25
    • 0000994003 scopus 로고
    • Theorems of M-splittings of a singular M-matrix which depend on graph structure
    • H. Schneider Theorems of M-splittings of a singular M-matrix which depend on graph structure Linear Algebra Appl. 58 1984 407 429
    • (1984) Linear Algebra Appl. , vol.58 , pp. 407-429
    • Schneider, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.