메뉴 건너뛰기




Volumn 63, Issue 5, 2012, Pages 889-903

An evaluation of classification models for question topic categorization

Author keywords

classification; text mining

Indexed keywords

CLASSIFICATION ALGORITHM; CLASSIFICATION METHODS; CLASSIFICATION MODELS; DATA SETS; HIERARCHICAL CLASSIFICATION; MAXIMUM ENTROPY; NAIVE BAYES; QUESTION ANSWERING; SYSTEMATIC EVALUATION; TEXT MINING; TOPIC CLASSIFICATION; TRAINING DATA;

EID: 84862784200     PISSN: 15322882     EISSN: 15322890     Source Type: Journal    
DOI: 10.1002/asi.22611     Document Type: Article
Times cited : (47)

References (43)
  • 2
    • 0345570094 scopus 로고    scopus 로고
    • Scaling to very very large corpora for natural language disambiguation
    • Stroudsburg, PA: Association for Computational Linguistics
    • Banko, M., &, Brill, E., (2001). Scaling to very very large corpora for natural language disambiguation. In Proceedings of the 39th Annual Meeting on Association for Computational Linguistics (ACL) (pp. 26-33). Stroudsburg, PA: Association for Computational Linguistics.
    • (2001) Proceedings of the 39th Annual Meeting on Association for Computational Linguistics (ACL) , pp. 26-33
    • Banko, M.1    Brill, E.2
  • 4
    • 33750567907 scopus 로고    scopus 로고
    • Improving automatic query classification via semi-supervised learning
    • DOI 10.1109/ICDM.2005.80, 1565660, Proceedings - Fifth IEEE International Conference on Data Mining, ICDM 2005
    • Beitzel, S. M., Jensen, E. C., Frieder, O., Lewis, D. D., Chowdhury, A., &, Kolcz, A., (2005). Improving automatic query classification via semi-supervised learning. In Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM) (pp. 42-49). Menlo Park, CA: IEEE Computer Society. (Pubitemid 47385675)
    • (2005) Proceedings - IEEE International Conference on Data Mining, ICDM , pp. 42-49
    • Beitzel, S.M.1    Jensen, E.C.2    Frieder, O.3    Lewis, D.D.4    Chowdhury, A.5    Kolcz, A.6
  • 9
    • 18744367558 scopus 로고    scopus 로고
    • Hierarchical document categorization with Support Vector Machines
    • CIKM 2004: Proceedings of the Thirteenth ACM Conference on Information and Knowledge Management
    • Cai, L., &, Hofmann, T., (2004). Hierarchical document categorization with support vector machines. In Proceedings of the 13th ACM International Conference on Information and Knowledge Management (CIKM) (pp. 78-87). New York: ACM Press. (Pubitemid 40673426)
    • (2004) International Conference on Information and Knowledge Management, Proceedings , pp. 78-87
    • Cai, L.1    Hofmann, T.2
  • 10
    • 77954566545 scopus 로고    scopus 로고
    • A generalized framework of exploring category information for question retrieval in community question answer archives. A generalized framework of exploring category information for question retrieval in community question answer archives
    • New York: ACM Press
    • Cao, X., Cong, G., Cui, B., &, Jensen, C. S., (2010). A generalized framework of exploring category information for question retrieval in community question answer archives. A generalized framework of exploring category information for question retrieval in community question answer archives. In Proceedings of the 19th International Conference on World Wide Web (WWW) (pp. 201-210). New York: ACM Press.
    • (2010) Proceedings of the 19th International Conference on World Wide Web (WWW) , pp. 201-210
    • Cao, X.1    Cong, G.2    Cui, B.3    Jensen, C.S.4
  • 23
    • 1542370072 scopus 로고    scopus 로고
    • Learning question classifiersLearning question classifiers
    • Stroudsburg, PA: Association for Computational Linguistics
    • Li, X., &, Roth, D., (2002). Learning question classifiersLearning question classifiers. In Proceedings of the 19th International Conference on Computational Linguistics (COLING) (Vol. 1, pp. 1-7). Stroudsburg, PA: Association for Computational Linguistics.
    • (2002) Proceedings of the 19th International Conference on Computational Linguistics (COLING) , vol.1 , pp. 1-7
    • Li, X.1    Roth, D.2
  • 27
    • 0041428162 scopus 로고    scopus 로고
    • Mining for interactive identification of users' information needs
    • Liu, R. L., &, Lin, W. J., (2003). Mining for interactive identification of users' information needs. Information Systems, 28, 815-833.
    • (2003) Information Systems , vol.28 , pp. 815-833
    • Liu, R.L.1    Lin, W.J.2
  • 28
    • 33745776526 scopus 로고    scopus 로고
    • Support vector machines classification with a very large-scale taxonomy
    • Liu, T. Y., Yang, Y., Wan, H., Zeng, H. J., Chen, Z., &, Ma, W. Y., (2005). Support vector machines classification with a very large-scale taxonomy. SIGKDD Explorations, 71, 36-43.
    • (2005) SIGKDD Explorations , vol.71 , pp. 36-43
    • Liu, T.Y.1    Yang, Y.2    Wan, H.3    Zeng, H.J.4    Chen, Z.5    Ma, W.Y.6
  • 32
    • 72949088640 scopus 로고    scopus 로고
    • Interaction analysis of the alice chatterbot: A two-study investigation of dialog and domain questioning
    • Schumaker, R. P., &, Chen, H., (2010). Interaction analysis of the alice chatterbot: A two-study investigation of dialog and domain questioning. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 40 (1) 40-51.
    • (2010) IEEE Transactions on Systems, Man, and Cybernetics, Part A , vol.40 , Issue.1 , pp. 40-51
    • Schumaker, R.P.1    Chen, H.2
  • 33
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, F., (2002). Machine learning in automated text categorization. ACM Computing Survey, 34 (1), 1-47.
    • (2002) ACM Computing Survey , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 35
    • 78651375098 scopus 로고    scopus 로고
    • A survey of hierarchical classification across different application domains
    • Silla, C. N., &, Freitas, A. A., (2011). A survey of hierarchical classification across different application domains. Data Mining and Knowledge Discovery, 22 (1-2), 31-72.
    • (2011) Data Mining and Knowledge Discovery , vol.22 , Issue.12 , pp. 31-72
    • Silla, C.N.1    Freitas, A.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.