-
1
-
-
70350164756
-
A modified Newton method for solving non-linear algebraic equations
-
Atluri, S. N.; Liu, C.-S.; Kuo, C. L. (2009): A modified Newton method for solving non-linear algebraic equations. J. Marine Sci. Tech., vol. 17, pp. 238-247.
-
(2009)
J. Marine Sci. Tech.
, vol.17
, pp. 238-247
-
-
Atluri, S.N.1
Liu, C.-S.2
Kuo, C.L.3
-
2
-
-
0040673757
-
Computer oriented algorithms for solving systems of simultaneous nonlinear algebraic equations
-
Byrne, G. D. and Hall C. A. Eds., Academic Press, New York
-
Brown, K. M. (1973): Computer oriented algorithms for solving systems of simultaneous nonlinear algebraic equations. In Numerical Solution of Systems ofNonlinear Algebraic Equations, Byrne, G. D. and Hall C. A. Eds., pp. 281-348, Academic Press, New York.
-
(1973)
Numerical Solution of Systems OfNonlinear Algebraic Equations
, pp. 281-348
-
-
Brown, K.M.1
-
3
-
-
0000615832
-
On a new method of numerically integrating a system of nonlinear equations
-
Davidenko, D. (1953): On a new method of numerically integrating a system of nonlinear equations. Doklady Akad. Nauk SSSR, vol. 88, pp. 601-604.
-
(1953)
Doklady Akad. Nauk SSSR
, vol.88
, pp. 601-604
-
-
Davidenko, D.1
-
4
-
-
79955488417
-
Solving large scale nonlinear equations by a new ODE numerical integration method
-
Han, T.; Han Y. (2010): Solving large scale nonlinear equations by a new ODE numerical integration method. Appl. Math., vol. 1, pp. 222-229.
-
(2010)
Appl. Math.
, vol.1
, pp. 222-229
-
-
Han, T.1
Han, Y.2
-
5
-
-
84980134538
-
On algorithms for solving f (x)=0
-
Hirsch, M.; Smale, S. (1979): On algorithms for solving f (x)=0. Commun. Pure Appl. Math., vol. 32, pp. 281-312.
-
(1979)
Commun. Pure Appl. Math.
, vol.32
, pp. 281-312
-
-
Hirsch, M.1
Smale, S.2
-
6
-
-
78649506602
-
Solving non-linear algebraic equations by a scalar Newton-homotopy continuation method
-
Ku, C. Y.; Yeih, W.; Liu, C.-S. (2010): Solving non-linear algebraic equations by a scalar Newton-homotopy continuation method. Int. J. Non-Linear Sci. Num. Simul., vol. 11, pp. 435-450.
-
(2010)
Int. J. Non-Linear Sci. Num. Simul.
, vol.11
, pp. 435-450
-
-
Ku, C.Y.1
Yeih, W.2
Liu, C.-S.3
-
7
-
-
0034188108
-
A Jordan algebra and dynamic system with associator as vector field
-
Liu, C.-S. (2000): A Jordan algebra and dynamic system with associator as vector field. Int. J. Non-Linear Mech., vol. 35, pp. 421-429.
-
(2000)
Int. J. Non-Linear Mech.
, vol.35
, pp. 421-429
-
-
Liu, C.-S.1
-
8
-
-
0035480574
-
Cone of non-linear dynamical system and group preserving schemes
-
DOI 10.1016/S0020-7462(00)00069-X, PII S002074620000069X
-
Liu, C.-S. (2001): Cone of non-linear dynamical system and group preserving schemes. Int. J. Non-Linear Mech., vol. 36, pp. 1047-1068. (Pubitemid 32457387)
-
(2001)
International Journal of Non-Linear Mechanics
, vol.36
, Issue.7
, pp. 1047-1068
-
-
Liu, C.-S.1
-
9
-
-
58149396461
-
A time-marching algorithm for solving non-linear obstacle problems with the aid of an NCP-function
-
Liu, C.-S. (2008): A time-marching algorithm for solving non-linear obstacle problems with the aid of an NCP-function. CMC: Computers, Materials & Continua, vol. 8, pp. 53-65.
-
(2008)
CMC: Computers, Materials and Continua
, vol.8
, pp. 53-65
-
-
Liu, C.-S.1
-
10
-
-
77449088886
-
A fictitious time integration method for a quasilinear elliptic boundary value problem, defined in an arbitrary plane domain
-
Liu, C.-S. (2009a): A fictitious time integration method for a quasilinear elliptic boundary value problem, defined in an arbitrary plane domain. CMC: Computers, Materials & Continua, vol. 11, pp. 15-32.
-
(2009)
CMC: Computers, Materials & Continua
, vol.11
, pp. 15-32
-
-
Liu, C.-S.1
-
11
-
-
67649997702
-
A fictitious time integration method for the Burgers equation
-
Liu, C.-S. (2009b): A fictitious time integration method for the Burgers equation. CMC: Computers, Materials & Continua, vol. 9, pp. 229-252.
-
(2009)
CMC: Computers, Materials & Continua
, vol.9
, pp. 229-252
-
-
Liu, C.-S.1
-
12
-
-
77249118300
-
A fictitious time integration method for solving delay ordinary differential equations
-
Liu, C.-S. (2009c): A fictitious time integration method for solving delay ordinary differential equations. CMC: Computers, Materials & Continua, vol. 10, pp. 97- 116.
-
(2009)
CMC: Computers Materials & Continua
, vol.10
, pp. 97-116
-
-
Liu, C.-S.1
-
13
-
-
83655182319
-
A highly accurate multi-scale full/half-order polynomial interpolation
-
Liu, C.-S. (2011): A highly accurate multi-scale full/half-order polynomial interpolation. CMC: Computers, Materials & Continua, vol. 25, pp. 239-263.
-
(2011)
CMC: Computers Materials & Continua
, vol.25
, pp. 239-263
-
-
Liu, C.-S.1
-
14
-
-
55349116390
-
A novel time integration method for solving a large system of non-linear algebraic equations
-
Liu, C.-S.; Atluri, S. N. (2008): A novel time integration method for solving a large system of non-linear algebraic equations. CMES: Computer Modeling in Engineering & Sciences, vol. 31, pp. 71-83.
-
(2008)
CMES: Computer Modeling in Engineering & Sciences
, vol.31
, pp. 71-83
-
-
Liu, C.-S.1
Atluri, S.N.2
-
15
-
-
79955519618
-
Simple "residual-norm" based algorithms, for the solution of a large system of non-linear algebraic equations, which converge faster than the Newton's method
-
Liu, C.-S.; Atluri, S. N. (2011a): Simple "residual-norm" based algorithms, for the solution of a large system of non-linear algebraic equations, which converge faster than the Newton's method. CMES: Computer Modeling in Engineering & Sciences, vol. 71, pp. 279-304.
-
(2011)
CMES: Computer Modeling in Engineering & Sciences
, vol.71
, pp. 279-304
-
-
Liu, C.-S.1
Atluri, S.N.2
-
16
-
-
79959812718
-
An iterative algorithm for solving a system ofnonlinear algebraic equations, F(x) = 0, using the system of ODEs with an optimum a in ?x = l[aF+(1a)BTF]; Bi j = xj
-
Liu, C.-S.; Atluri, S. N. (2011b): An iterative algorithm for solving a system ofnonlinear algebraic equations, F(x) = 0, using the system of ODEs with an optimum a in ?x = l[aF+(1a)BTF]; Bi j = j. CMES: Computer Modeling in Engineering & Sciences, vol. 73, pp. 395-431.
-
(2011)
CMES: Computer Modeling in Engineering & Sciences
, vol.73
, pp. 395-431
-
-
Liu, C.-S.1
Atluri, S.N.2
-
17
-
-
70350191819
-
Novel methods for solving severely ill-posed linear equations system
-
Liu, C.-S.; Chang, C. W. (2009): Novel methods for solving severely ill-posed linear equations system. J. Marine Sciences & Tech., vol. 17, pp. 216-227.
-
(2009)
J. Marine Sciences & Tech.
, vol.17
, pp. 216-227
-
-
Liu, C.-S.1
Chang, C.W.2
-
18
-
-
84863230414
-
Iterative solution of a system of nonlinear algebraic equations F(x) = 0, using ?x = l[aR+bP] or l[aF+bP-], R is a normal to a hyper-surface function of F, P normal to R, and P- normal to F
-
Liu, C.-S.; Dai, H. H.; Atluri, S. N. (2011): Iterative solution of a system of nonlinear algebraic equations F(x) = 0, using ?x = l[aR+bP] or l[aF+bP-], R is a normal to a hyper-surface function of F, P normal to R, and P- normal to F. CMES: Computer Modeling in Engineering & Sciences, vol. 81, pp. 335-362.
-
(2011)
CMES: Computer Modeling in Engineering & Sciences
, vol.81
, pp. 335-362
-
-
Liu, C.-S.1
Dai, H.H.2
Atluri, S.N.3
-
19
-
-
77949806014
-
A scalar homotopy method for solving an over/under-determined system of non-linear algebraic equations
-
Liu, C.-S.; Yeih,W.; Kuo, C. L.; Atluri, S. N. (2009): A scalar homotopy method for solving an over/under-determined system of non-linear algebraic equations. CMES: Computer Modeling in Engineering & Sciences, vol. 53, pp. 47-71.
-
(2009)
CMES: Computer Modeling in Engineering & Sciences
, vol.53
, pp. 47-71
-
-
Liu, C.-S.1
Yeih, W.2
Kuo, C.L.3
Atluri, S.N.4
|