메뉴 건너뛰기




Volumn 84, Issue 6, 2012, Pages 575-601

A globally optimal iterative algorithm using the best descent vector x =λ [αcF+BTF], with the critical value αc, for solving a system of nonlinear algebraic equations F(x) = 0

Author keywords

Future cone; Globally Optimal Iterative Algorithm (GOIA); Nonlinear algebraic equations; Optimal Iterative Algorithm (OIA)

Indexed keywords

CONVERGENCE RATES; CRITICAL VALUE; DISCRETE DYNAMICS; FAST CONVERGENCE RATE; ITERATIVE ALGORITHM; MINKOWSKI SPACE; NONLINEAR ALGEBRAIC EQUATIONS; NUMERICAL EXAMPLE; RESIDUAL VECTORS;

EID: 84862702621     PISSN: 15261492     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (23)

References (19)
  • 1
    • 70350164756 scopus 로고    scopus 로고
    • A modified Newton method for solving non-linear algebraic equations
    • Atluri, S. N.; Liu, C.-S.; Kuo, C. L. (2009): A modified Newton method for solving non-linear algebraic equations. J. Marine Sci. Tech., vol. 17, pp. 238-247.
    • (2009) J. Marine Sci. Tech. , vol.17 , pp. 238-247
    • Atluri, S.N.1    Liu, C.-S.2    Kuo, C.L.3
  • 2
    • 0040673757 scopus 로고
    • Computer oriented algorithms for solving systems of simultaneous nonlinear algebraic equations
    • Byrne, G. D. and Hall C. A. Eds., Academic Press, New York
    • Brown, K. M. (1973): Computer oriented algorithms for solving systems of simultaneous nonlinear algebraic equations. In Numerical Solution of Systems ofNonlinear Algebraic Equations, Byrne, G. D. and Hall C. A. Eds., pp. 281-348, Academic Press, New York.
    • (1973) Numerical Solution of Systems OfNonlinear Algebraic Equations , pp. 281-348
    • Brown, K.M.1
  • 3
    • 0000615832 scopus 로고
    • On a new method of numerically integrating a system of nonlinear equations
    • Davidenko, D. (1953): On a new method of numerically integrating a system of nonlinear equations. Doklady Akad. Nauk SSSR, vol. 88, pp. 601-604.
    • (1953) Doklady Akad. Nauk SSSR , vol.88 , pp. 601-604
    • Davidenko, D.1
  • 4
    • 79955488417 scopus 로고    scopus 로고
    • Solving large scale nonlinear equations by a new ODE numerical integration method
    • Han, T.; Han Y. (2010): Solving large scale nonlinear equations by a new ODE numerical integration method. Appl. Math., vol. 1, pp. 222-229.
    • (2010) Appl. Math. , vol.1 , pp. 222-229
    • Han, T.1    Han, Y.2
  • 5
    • 84980134538 scopus 로고
    • On algorithms for solving f (x)=0
    • Hirsch, M.; Smale, S. (1979): On algorithms for solving f (x)=0. Commun. Pure Appl. Math., vol. 32, pp. 281-312.
    • (1979) Commun. Pure Appl. Math. , vol.32 , pp. 281-312
    • Hirsch, M.1    Smale, S.2
  • 6
    • 78649506602 scopus 로고    scopus 로고
    • Solving non-linear algebraic equations by a scalar Newton-homotopy continuation method
    • Ku, C. Y.; Yeih, W.; Liu, C.-S. (2010): Solving non-linear algebraic equations by a scalar Newton-homotopy continuation method. Int. J. Non-Linear Sci. Num. Simul., vol. 11, pp. 435-450.
    • (2010) Int. J. Non-Linear Sci. Num. Simul. , vol.11 , pp. 435-450
    • Ku, C.Y.1    Yeih, W.2    Liu, C.-S.3
  • 7
    • 0034188108 scopus 로고    scopus 로고
    • A Jordan algebra and dynamic system with associator as vector field
    • Liu, C.-S. (2000): A Jordan algebra and dynamic system with associator as vector field. Int. J. Non-Linear Mech., vol. 35, pp. 421-429.
    • (2000) Int. J. Non-Linear Mech. , vol.35 , pp. 421-429
    • Liu, C.-S.1
  • 8
    • 0035480574 scopus 로고    scopus 로고
    • Cone of non-linear dynamical system and group preserving schemes
    • DOI 10.1016/S0020-7462(00)00069-X, PII S002074620000069X
    • Liu, C.-S. (2001): Cone of non-linear dynamical system and group preserving schemes. Int. J. Non-Linear Mech., vol. 36, pp. 1047-1068. (Pubitemid 32457387)
    • (2001) International Journal of Non-Linear Mechanics , vol.36 , Issue.7 , pp. 1047-1068
    • Liu, C.-S.1
  • 9
    • 58149396461 scopus 로고    scopus 로고
    • A time-marching algorithm for solving non-linear obstacle problems with the aid of an NCP-function
    • Liu, C.-S. (2008): A time-marching algorithm for solving non-linear obstacle problems with the aid of an NCP-function. CMC: Computers, Materials & Continua, vol. 8, pp. 53-65.
    • (2008) CMC: Computers, Materials and Continua , vol.8 , pp. 53-65
    • Liu, C.-S.1
  • 10
    • 77449088886 scopus 로고    scopus 로고
    • A fictitious time integration method for a quasilinear elliptic boundary value problem, defined in an arbitrary plane domain
    • Liu, C.-S. (2009a): A fictitious time integration method for a quasilinear elliptic boundary value problem, defined in an arbitrary plane domain. CMC: Computers, Materials & Continua, vol. 11, pp. 15-32.
    • (2009) CMC: Computers, Materials & Continua , vol.11 , pp. 15-32
    • Liu, C.-S.1
  • 11
    • 67649997702 scopus 로고    scopus 로고
    • A fictitious time integration method for the Burgers equation
    • Liu, C.-S. (2009b): A fictitious time integration method for the Burgers equation. CMC: Computers, Materials & Continua, vol. 9, pp. 229-252.
    • (2009) CMC: Computers, Materials & Continua , vol.9 , pp. 229-252
    • Liu, C.-S.1
  • 12
    • 77249118300 scopus 로고    scopus 로고
    • A fictitious time integration method for solving delay ordinary differential equations
    • Liu, C.-S. (2009c): A fictitious time integration method for solving delay ordinary differential equations. CMC: Computers, Materials & Continua, vol. 10, pp. 97- 116.
    • (2009) CMC: Computers Materials & Continua , vol.10 , pp. 97-116
    • Liu, C.-S.1
  • 13
    • 83655182319 scopus 로고    scopus 로고
    • A highly accurate multi-scale full/half-order polynomial interpolation
    • Liu, C.-S. (2011): A highly accurate multi-scale full/half-order polynomial interpolation. CMC: Computers, Materials & Continua, vol. 25, pp. 239-263.
    • (2011) CMC: Computers Materials & Continua , vol.25 , pp. 239-263
    • Liu, C.-S.1
  • 14
    • 55349116390 scopus 로고    scopus 로고
    • A novel time integration method for solving a large system of non-linear algebraic equations
    • Liu, C.-S.; Atluri, S. N. (2008): A novel time integration method for solving a large system of non-linear algebraic equations. CMES: Computer Modeling in Engineering & Sciences, vol. 31, pp. 71-83.
    • (2008) CMES: Computer Modeling in Engineering & Sciences , vol.31 , pp. 71-83
    • Liu, C.-S.1    Atluri, S.N.2
  • 15
    • 79955519618 scopus 로고    scopus 로고
    • Simple "residual-norm" based algorithms, for the solution of a large system of non-linear algebraic equations, which converge faster than the Newton's method
    • Liu, C.-S.; Atluri, S. N. (2011a): Simple "residual-norm" based algorithms, for the solution of a large system of non-linear algebraic equations, which converge faster than the Newton's method. CMES: Computer Modeling in Engineering & Sciences, vol. 71, pp. 279-304.
    • (2011) CMES: Computer Modeling in Engineering & Sciences , vol.71 , pp. 279-304
    • Liu, C.-S.1    Atluri, S.N.2
  • 16
    • 79959812718 scopus 로고    scopus 로고
    • An iterative algorithm for solving a system ofnonlinear algebraic equations, F(x) = 0, using the system of ODEs with an optimum a in ?x = l[aF+(1a)BTF]; Bi j = xj
    • Liu, C.-S.; Atluri, S. N. (2011b): An iterative algorithm for solving a system ofnonlinear algebraic equations, F(x) = 0, using the system of ODEs with an optimum a in ?x = l[aF+(1a)BTF]; Bi j = j. CMES: Computer Modeling in Engineering & Sciences, vol. 73, pp. 395-431.
    • (2011) CMES: Computer Modeling in Engineering & Sciences , vol.73 , pp. 395-431
    • Liu, C.-S.1    Atluri, S.N.2
  • 17
    • 70350191819 scopus 로고    scopus 로고
    • Novel methods for solving severely ill-posed linear equations system
    • Liu, C.-S.; Chang, C. W. (2009): Novel methods for solving severely ill-posed linear equations system. J. Marine Sciences & Tech., vol. 17, pp. 216-227.
    • (2009) J. Marine Sciences & Tech. , vol.17 , pp. 216-227
    • Liu, C.-S.1    Chang, C.W.2
  • 18
    • 84863230414 scopus 로고    scopus 로고
    • Iterative solution of a system of nonlinear algebraic equations F(x) = 0, using ?x = l[aR+bP] or l[aF+bP-], R is a normal to a hyper-surface function of F, P normal to R, and P- normal to F
    • Liu, C.-S.; Dai, H. H.; Atluri, S. N. (2011): Iterative solution of a system of nonlinear algebraic equations F(x) = 0, using ?x = l[aR+bP] or l[aF+bP-], R is a normal to a hyper-surface function of F, P normal to R, and P- normal to F. CMES: Computer Modeling in Engineering & Sciences, vol. 81, pp. 335-362.
    • (2011) CMES: Computer Modeling in Engineering & Sciences , vol.81 , pp. 335-362
    • Liu, C.-S.1    Dai, H.H.2    Atluri, S.N.3
  • 19
    • 77949806014 scopus 로고    scopus 로고
    • A scalar homotopy method for solving an over/under-determined system of non-linear algebraic equations
    • Liu, C.-S.; Yeih,W.; Kuo, C. L.; Atluri, S. N. (2009): A scalar homotopy method for solving an over/under-determined system of non-linear algebraic equations. CMES: Computer Modeling in Engineering & Sciences, vol. 53, pp. 47-71.
    • (2009) CMES: Computer Modeling in Engineering & Sciences , vol.53 , pp. 47-71
    • Liu, C.-S.1    Yeih, W.2    Kuo, C.L.3    Atluri, S.N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.