-
1
-
-
78751557978
-
Approximation algorithms for the edge-disjoint paths problem via Raecke decompositions
-
Washington, DC, USA, IEEE Computer Society
-
Matthew Andrews. Approximation algorithms for the edge-disjoint paths problem via Raecke decompositions. In Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS '10, pages 277-286, Washington, DC, USA, 2010. IEEE Computer Society.
-
(2010)
Proceedings of the 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS '10
, pp. 277-286
-
-
Andrews, M.1
-
2
-
-
79952586177
-
Inapproximability of edge-disjoint paths and low congestion routing on undirected graphs
-
Matthew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, Kunal Talwar, and Lisa Zhang. Inapproximability of edge-disjoint paths and low congestion routing on undirected graphs. Combinatorica, 30(5):485-520, 2010.
-
(2010)
Combinatorica
, vol.30
, Issue.5
, pp. 485-520
-
-
Andrews, M.1
Chuzhoy, J.2
Guruswami, V.3
Khanna, S.4
Talwar, K.5
Zhang, L.6
-
3
-
-
34848834854
-
Hardness of the undirected edge-disjoint paths problem
-
Harold N. Gabow and Ronald Fagin, editors, ACM
-
Matthew Andrews and Lisa Zhang. Hardness of the undirected edge-disjoint paths problem. In Harold N. Gabow and Ronald Fagin, editors, STOC, pages 276-283. ACM, 2005.
-
(2005)
STOC
, pp. 276-283
-
-
Andrews, M.1
Zhang, L.2
-
4
-
-
40049107795
-
Hardness of the undirected congestion minimization problem
-
Matthew Andrews and Lisa Zhang. Hardness of the undirected congestion minimization problem. SIAM J. Comput., 37(1):112-131, 2007.
-
(2007)
SIAM J. Comput.
, vol.37
, Issue.1
, pp. 112-131
-
-
Andrews, M.1
Zhang, L.2
-
5
-
-
0032058198
-
Proof Verification and the Hardness of Approximation Problems
-
S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri cation and the hardness of approximation problems. Journal of the ACM, 45(3):501-555, 1998. (Pubitemid 128506634)
-
(1998)
Journal of the ACM
, vol.45
, Issue.3
, pp. 501-555
-
-
Arora, S.1
Lund, C.2
Motwani, R.3
Sudan, M.4
Szegedy, M.5
-
6
-
-
0031651077
-
Probabilistic checking of proofs: A new characterization of NP
-
S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. Journal of the ACM, 45(1):70-122, 1998. (Pubitemid 128615465)
-
(1998)
Journal of the ACM
, vol.45
, Issue.1
, pp. 70-122
-
-
Arora, S.1
Safra, S.2
-
7
-
-
70349970181
-
Expander flows, geometric embeddings and graph partitioning
-
Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings and graph partitioning. J. ACM, 56(2), 2009.
-
(2009)
J. ACM
, vol.56
, Issue.2
-
-
Arora, S.1
Rao, S.2
Vazirani, U.V.3
-
8
-
-
0000927271
-
An O(log k) approximate min-cut max-flow theorem and approximation algorithm
-
Yonatan Aumann and Yuval Rabani. An O(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput., 27(1):91-301, 1998.
-
(1998)
SIAM J. Comput.
, vol.27
, Issue.1
, pp. 91-301
-
-
Aumann, Y.1
Rabani, Y.2
-
9
-
-
4544250516
-
The all-or-nothing multicommodity flow problem
-
New York, NY, USA, ACM
-
Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. The all-or-nothing multicommodity flow problem. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, STOC '04, pages 156-165, New York, NY, USA, 2004. ACM.
-
(2004)
Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC '04
, pp. 156-165
-
-
Chekuri, C.1
Khanna, S.2
Shepherd, F.B.3
-
10
-
-
34848917341
-
Multicommodity flow, well-linked terminals, and routing problems
-
New York, NY, USA, ACM
-
Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Multicommodity flow, well-linked terminals, and routing problems. In STOC '05: Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 183-192, New York, NY, USA, 2005. ACM.
-
(2005)
STOC '05: Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing
, pp. 183-192
-
-
Chekuri, C.1
Khanna, S.2
Shepherd, F.B.3
-
11
-
-
33746352017
-
An O(√n) approximation and integrality gap for disjoint paths and unsplittable flow
-
Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An O(√n) approximation and integrality gap for disjoint paths and unsplittable flow. Theory of Computing, 2(1):137-146, 2006.
-
(2006)
Theory of Computing
, vol.2
, Issue.1
, pp. 137-146
-
-
Chekuri, C.1
Khanna, S.2
Bruce Shepherd, F.3
-
12
-
-
84862602684
-
Routing in undirected graphs with constant congestion
-
to appear
-
Julia Chuzhoy. Routing in undirected graphs with constant congestion. In STOC 2012, to appear.
-
(2012)
STOC
-
-
Chuzhoy, J.1
-
13
-
-
33845322996
-
New hardness results for congestion minimization and machine scheduling
-
Julia Chuzhoy and Joseph (Seffi) Naor. New hardness results for congestion minimization and machine scheduling. J. ACM, 53(5):707-721, 2006.
-
(2006)
J. ACM
, vol.53
, Issue.5
, pp. 707-721
-
-
Chuzhoy, J.1
Naor, J.2
-
15
-
-
0003165311
-
College admissions and the stability of marriage
-
David Gale and Lloyd Shapley. College admissions and the stability of marriage. American Mathematical Monthly, 1:9-14, 1962.
-
(1962)
American Mathematical Monthly
, vol.1
, pp. 9-14
-
-
Gale, D.1
Shapley, L.2
-
16
-
-
0030127682
-
Approximate max-flow min-(multi)cut theorems and their applications
-
N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)-cut theorems and their applications. SIAM Journal on Computing, 25:235-251, 1995. (Pubitemid 126577270)
-
(1996)
SIAM Journal on Computing
, vol.25
, Issue.2
, pp. 235-251
-
-
Garg, N.1
Vazirani, V.V.2
Yannakakis, M.3
-
17
-
-
84866516599
-
Primal-dual approximation algorithms for integral flow and multicut in trees, with applications to matching and set cover
-
Andrzej Lingas, Rolf G. Karlsson, and Svante Carlsson, editors, ICALP, Springer
-
Naveen Garg, Vijay V. Vazirani, and Mihalis Yannakakis. Primal-dual approximation algorithms for integral flow and multicut in trees, with applications to matching and set cover. In Andrzej Lingas, Rolf G. Karlsson, and Svante Carlsson, editors, ICALP, volume 700 of Lecture Notes in Computer Science, pages 64-75. Springer, 1993.
-
(1993)
Lecture Notes in Computer Science
, vol.700
, pp. 64-75
-
-
Garg, N.1
Vazirani, V.V.2
Yannakakis, M.3
-
18
-
-
0032677628
-
Random sampling in cut, flow, and network design problems
-
David R. Karger. Random sampling in cut, flow, and network design problems. Mathematics of Operations Research, 24:383-413, 1999.
-
(1999)
Mathematics of Operations Research
, vol.24
, pp. 383-413
-
-
Karger, D.R.1
-
19
-
-
0003037529
-
Reducibility among combinatorial problems
-
R. Miller and J. Thatcher, editors, Plenum Press
-
R. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher, editors, Complexity of Computer Computations, pages 85-103. Plenum Press, 1972.
-
(1972)
Complexity of Computer Computations
, pp. 85-103
-
-
Karp, R.1
-
20
-
-
0000651166
-
Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms
-
F. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM, 46:787-832, 1999.
-
(1999)
Journal of the ACM
, vol.46
, pp. 787-832
-
-
Leighton, F.T.1
Rao, S.2
-
23
-
-
51249173817
-
Randomized rounding: A technique for provably good algorithms and algorithmic proofs
-
December
-
Prabhakar Raghavan and Clark D. Tompson. Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica, 7:365-374, December 1987.
-
(1987)
Combinatorica
, vol.7
, pp. 365-374
-
-
Raghavan, P.1
Tompson, C.D.2
-
24
-
-
77049088062
-
Edge disjoint paths in moderately connected graphs
-
Satish Rao and Shuheng Zhou. Edge disjoint paths in moderately connected graphs. SIAM J. Comput., 39(5):1856-1887, 2010.
-
(2010)
SIAM J. Comput.
, vol.39
, Issue.5
, pp. 1856-1887
-
-
Rao, S.1
Zhou, S.2
-
25
-
-
0001226672
-
A parallel repetition theorem
-
R. Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763-803, 1998. (Pubitemid 128490838)
-
(1998)
SIAM Journal on Computing
, vol.27
, Issue.3
, pp. 763-803
-
-
Raz, R.1
|