메뉴 건너뛰기




Volumn , Issue , 2011, Pages 3362-3366

Sparse representation via ℓ 1-minimization for underdetermined systems in classification of tumors with gene expression data

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM DEVELOPMENT; CANCER DIAGNOSIS; CLASSIFICATION ALGORITHM; DNA MICROARRAY DATA; GENE EXPRESSION DATA; GENE EXPRESSION DATASETS; INPUT DATAS; MINIMIZATION ALGORITHMS; MODEL SELECTION; NUMERICAL RESULTS; SPARSE REPRESENTATION; SPARSE SIGNALS; SUPPORT VECTOR MACHINE METHOD;

EID: 84862618159     PISSN: 1557170X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IEMBS.2011.6090911     Document Type: Conference Paper
Times cited : (6)

References (19)
  • 4
    • 15844371192 scopus 로고    scopus 로고
    • Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods
    • M. Asyali, M. Alci, "Reliability analysis of microarray data using fuzzy c-means and normal mixture modeling based classification methods". BIOINFORMATICS, 2005, 21, (5), pp. 644-649.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 644-649
    • Asyali, M.1    Alci, M.2
  • 7
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • E. Candès, J. Romberg and T. Tao, "Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information", IEEE Transactions on Information Theory, Vol. 52, pp. 489-509, 2006.
    • (2006) IEEE Transactions on Information Theory , vol.52 , pp. 489-509
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 8
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, "Support Vector Networks", Machine Learning, vol. 20, No. 3, pp. 273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 77955850624 scopus 로고    scopus 로고
    • An outlier map for support vector machine classification
    • M. Debruyne, "An Outlier Map for Support Vector Machine Classification", Annals of Applied Statistics, vol. 3, No.4, pp. 1566- 1580, 2009.
    • (2009) Annals of Applied Statistics , vol.3 , Issue.4 , pp. 1566-1580
    • Debruyne, M.1
  • 12
    • 65349171459 scopus 로고    scopus 로고
    • Sparse Representation for Classification of Tumors using gene expression data
    • X. Hang, F. Wu, "Sparse Representation for Classification of Tumors using gene expression data", Journal of Biomedicine and Biotechnology, 2009.
    • (2009) Journal of Biomedicine and Biotechnology
    • Hang, X.1    Wu, F.2
  • 15
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection", Proceedings of International Joint Conference on AI, pp 1137-1145, 1995.
    • (1995) Proceedings of International Joint Conference on AI , pp. 1137-1145
    • Kohavi, R.1
  • 17
    • 22544475586 scopus 로고    scopus 로고
    • GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
    • A. Statnikov, I. Tsamardinos, Y. Dosbayev, C. Aliferis, "GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data". International Journal of Medical Informatics, 2005, 74, pp. 491-503.
    • (2005) International Journal of Medical Informatics , vol.74 , pp. 491-503
    • Statnikov, A.1    Tsamardinos, I.2    Dosbayev, Y.3    Aliferis, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.