-
5
-
-
51049098129
-
-
10.1038/nphys1025
-
A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nat. Phys. 4, 711 (2008). 10.1038/nphys1025
-
(2008)
Nat. Phys.
, vol.4
, pp. 711
-
-
Widmer-Cooper, A.1
Perry, H.2
Harrowell, P.3
Reichman, D.R.4
-
6
-
-
77950021582
-
-
10.1038/nmat2634
-
H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe, Nature Mater. 9, 324 (2010). 10.1038/nmat2634
-
(2010)
Nature Mater.
, vol.9
, pp. 324
-
-
Tanaka, H.1
Kawasaki, T.2
Shintani, H.3
Watanabe, K.4
-
7
-
-
79958852994
-
-
10.1103/PhysRevE.83.051505
-
D. Coslovich, Phys. Rev. E 83, 051505 (2011). 10.1103/PhysRevE.83.051505
-
(2011)
Phys. Rev. e
, vol.83
, pp. 051505
-
-
Coslovich, D.1
-
8
-
-
53349180234
-
-
10.1038/nphys1050
-
G. Biroli, J.-P. Bouchaud, A. Cavagna, T. S. Grigera, and P. Verrocchio, Nat. Phys. 4, 771 (2008). 10.1038/nphys1050
-
(2008)
Nat. Phys.
, vol.4
, pp. 771
-
-
Biroli, G.1
Bouchaud, J.-P.2
Cavagna, A.3
Grigera, T.S.4
Verrocchio, P.5
-
12
-
-
0001733034
-
-
10.1103/PhysRevA.36.4891
-
B. Bernu, J. P. Hansen, Y. Hiwatari, and G. Pastore, Phys. Rev. A 36, 4891 (1987). 10.1103/PhysRevA.36.4891
-
(1987)
Phys. Rev. A
, vol.36
, pp. 4891
-
-
Bernu, B.1
Hansen, J.P.2
Hiwatari, Y.3
Pastore, G.4
-
13
-
-
37649028962
-
-
10.1103/PhysRevE.69.041202
-
Y. Brumer and D. R. Reichman, Phys. Rev. E 69, 041202 (2004). 10.1103/PhysRevE.69.041202
-
(2004)
Phys. Rev. e
, vol.69
, pp. 041202
-
-
Brumer, Y.1
Reichman, D.R.2
-
14
-
-
0037017174
-
-
10.1103/PhysRevLett.88.055502
-
T. S. Grigera, A. Cavagna, I. Giardina, and G. Parisi, Phys. Rev. Lett. 88, 055502 (2002). 10.1103/PhysRevLett.88.055502
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 055502
-
-
Grigera, T.S.1
Cavagna, A.2
Giardina, I.3
Parisi, G.4
-
16
-
-
0035306293
-
-
10.1103/PhysRevE.63.045102
-
T. S. Grigera and G. Parisi, Phys. Rev. E 63, 045102 (2001). 10.1103/PhysRevE.63.045102
-
(2001)
Phys. Rev. e
, vol.63
, pp. 045102
-
-
Grigera, T.S.1
Parisi, G.2
-
17
-
-
33750741893
-
-
10.1103/PhysRevLett.97.195701
-
G. Biroli, J.-P. Bouchaud, K. Miyazaki, and D. R. Reichman, Phys. Rev. Lett. 97, 195701 (2006). 10.1103/PhysRevLett.97.195701
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 195701
-
-
Biroli, G.1
Bouchaud, J.-P.2
Miyazaki, K.3
Reichman, D.R.4
-
20
-
-
85035044036
-
-
10.1088/1742-5468/2009/12/L12002
-
C. Cammarota, A. Cavagna, G. Gradenigo, T. S. Grigera, and P. Verrocchio, J. Stat. Mech.: Theory Exp. 2009, L12002 (2009). 10.1088/1742-5468/2009/12/ L12002
-
(2009)
J. Stat. Mech.: Theory Exp.
, vol.2009
, pp. 12002
-
-
Cammarota, C.1
Cavagna, A.2
Gradenigo, G.3
Grigera, T.S.4
Verrocchio, P.5
-
21
-
-
70450280699
-
-
10.1063/1.3257739
-
C. Cammarota, A. Cavagna, G. Gradenigo, T. S. Grigera, and P. Verrocchio, J. Chem. Phys. 131, 194901 (2009). 10.1063/1.3257739
-
(2009)
J. Chem. Phys.
, vol.131
, pp. 194901
-
-
Cammarota, C.1
Cavagna, A.2
Gradenigo, G.3
Grigera, T.S.4
Verrocchio, P.5
-
22
-
-
77955164106
-
-
10.1103/PhysRevLett.105.055703
-
C. Cammarota, A. Cavagna, I. Giardina, G. Gradenigo, T. S. Grigera, G. Parisi, and P. Verrocchio, Phys. Rev. Lett. 105, 055703 (2010). 10.1103/PhysRevLett.105.055703
-
(2010)
Phys. Rev. Lett.
, vol.105
, pp. 055703
-
-
Cammarota, C.1
Cavagna, A.2
Giardina, I.3
Gradenigo, G.4
Grigera, T.S.5
Parisi, G.6
Verrocchio, P.7
-
23
-
-
84856046420
-
-
10.1103/PhysRevE.85.011102
-
L. Berthier and W. Kob, Phys. Rev. E 85, 011102 (2012). 10.1103/PhysRevE.85.011102
-
(2012)
Phys. Rev. e
, vol.85
, pp. 011102
-
-
Berthier, L.1
Kob, W.2
-
30
-
-
84857602607
-
-
10.1103/PhysRevE.85.021120
-
R. L. Jack and L. Berthier, Phys. Rev. E 85, 021120 (2012). 10.1103/PhysRevE.85.021120
-
(2012)
Phys. Rev. e
, vol.85
, pp. 021120
-
-
Jack, R.L.1
Berthier, L.2
-
32
-
-
66649099880
-
-
10.1103/PhysRevLett.102.228301
-
A. J. Kabla and T. J. Senden, Phys. Rev. Lett. 102, 228301 (2009). 10.1103/PhysRevLett.102.228301
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 228301
-
-
Kabla, A.J.1
Senden, T.J.2
-
36
-
-
0000533581
-
-
10.1103/PhysRevLett.79.2077
-
M. Arndt, R. Stannarius, H. Groothues, E. Hempel, and F. Kremer, Phys. Rev. Lett. 79, 2077 (1997). 10.1103/PhysRevLett.79.2077
-
(1997)
Phys. Rev. Lett.
, vol.79
, pp. 2077
-
-
Arndt, M.1
Stannarius, R.2
Groothues, H.3
Hempel, E.4
Kremer, F.5
-
38
-
-
0003671053
-
-
in, edited by C. DeWitt-Morette, P. Cartier, and A. Folacci (Plenum, New York).
-
A. D. Sokal, in Functional Integration: Basics and Applications (1996 Cargèse School), edited by, C. DeWitt-Morette, P. Cartier, and, A. Folacci, (Plenum, New York, 1997).
-
(1997)
Functional Integration: Basics and Applications (1996 Cargèse School)
-
-
Sokal, A.D.1
-
39
-
-
0001479176
-
-
10.1103/PhysRevB.37.5606
-
R. N. Bhatt and A. P. Young, Phys. Rev. B 37, 5606 (1988). 10.1103/PhysRevB.37.5606
-
(1988)
Phys. Rev. B
, vol.37
, pp. 5606
-
-
Bhatt, R.N.1
Young, A.P.2
-
41
-
-
84862550828
-
-
β on R due to the extended nature of the excitations related to β-relaxation.
-
β on R due to the extended nature of the excitations related to β-relaxation.
-
-
-
-
42
-
-
84862566051
-
-
In fact, both surface tension and configurational entropy will fluctuate. At the practical level, though, disentangling the two effects is hard, and given that large surface tension fluctuations have been reported, a generalized version of RFOT that incorporates only surface tension fluctuations seems reasonable.
-
In fact, both surface tension and configurational entropy will fluctuate. At the practical level, though, disentangling the two effects is hard, and given that large surface tension fluctuations have been reported, a generalized version of RFOT that incorporates only surface tension fluctuations seems reasonable.
-
-
-
-
43
-
-
84862550829
-
-
This is a general prediction of our picture: by lowering the temperature we are gradually pushing u(and therefore ruling out) the MCT branch, diminishing the hybridization of the two branches and therefore eliminating the overshooting. At very low T, τ should be a purely increasing function of R.
-
This is a general prediction of our picture: by lowering the temperature we are gradually pushing up (and therefore ruling out) the MCT branch, diminishing the hybridization of the two branches and therefore eliminating the overshooting. At very low T, τ should be a purely increasing function of R.
-
-
-
-
44
-
-
84862562014
-
-
We remark, though, that the FC results reported above are in fact obtained with bona fide freezing.
-
We remark, though, that the FC results reported above are in fact obtained with bona fide freezing.
-
-
-
-
45
-
-
84862587347
-
-
Strictly, this means that exchanges of particles of different kind do not happen, but same-kind exchanges should be similarly hindered.
-
Strictly, this means that exchanges of particles of different kind do not happen, but same-kind exchanges should be similarly hindered.
-
-
-
-
46
-
-
84862587349
-
-
This decoupling is also found in FC swadynamics-not shown-where it is naturally expected since the swamoves consist precisely in the exchange of two particles of different size.
-
This decoupling is also found in FC swap dynamics-not shown-where it is naturally expected since the swap moves consist precisely in the exchange of two particles of different size.
-
-
-
|